Sistemas Expertos
marinachiia25 de Septiembre de 2012
3.752 Palabras (16 Páginas)836 Visitas
ISSN: 1579-0223
Introducción a los Sistemas Expertos
Juan José Samper Márquez
Los sistemas expertos son programas que reproducen el proceso intelectual de un experto humano en un campo particular, pudiendo mejorar su productividad, ahorrar tiempo y dinero, conservar sus valiosos conocimientos y difundirlos más fácilmente.
Introducción
Los sistemas expertos son programas que reproducen el proceso intelectual de un experto humano en un campo particular, pudiendo mejorar su productividad, ahorrar tiempo y dinero, conservar sus valiosos conocimientos y difundirlos más fácilmente.
Antes de la aparición del ordenador, el hombre ya se preguntaba si se le arrebataría el privilegio de razonar y pensar. En la actualidad existe un campo dentro de la inteligencia artificial al que se le atribuye esa facultad: el de los sistemas expertos. Estos sistemas permiten la creación de máquinas que razonan como el hombre, restringiéndose a un espacio de conocimientos limitado. En teoría pueden razonar siguiendo los pasos que seguiría un experto humano (médico, analista, empresario, etc.) para resolver un problema concreto. Este tipo de modelos de conocimiento por ordenador ofrece un extenso campo de posibilidades en resolución de problemas y en aprendizaje. Su uso se extenderá ampliamente en el futuro, debido a su importante impacto sobre los negocios y la industria.
El objetivo de este curso es enseñar de forma práctica el funcionamiento y construcción de un sistema experto. A lo largo de la serie de artículos se demostrará que los sistemas expertos son útiles y prácticos, y que, además, son realizables. También se analizará la problemática de la adquisición y representación del conocimiento, así como los métodos para tratar la incertidumbre.
¿QUÉ ES UN SISTEMA EXPERTO?
Los sistemas expertos se pueden considerar como el primer producto verdaderamente operacional de la inteligencia artificial. Son programas de ordenador diseñados para actuar como un especialista humano en un dominio particular o área de conocimiento. En este sentido, pueden considerarse como intermediarios entre el experto humano, que transmite su conocimiento al sistema, y el usuario que lo utiliza para resolver un problema con la eficacia del especialista. El sistema experto utilizará para ello el conocimiento que tenga almacenado y algunos métodos de inferencia.
A la vez, el usuario puede aprender observando el comportamiento del sistema. Es decir, los sistemas expertos se pueden considerar simultáneamente como un medio de ejecución y transmisión del conocimiento.
Lo que se intenta, de esta manera, es representar los mecanismos heurísticos que intervienen en un proceso de descubrimiento. Estos mecanismos forman ese conocimiento difícil de expresar que permite que los expertos humanos sean eficaces calculando lo menos posible. Los sistemas expertos contienen ese "saber hacer".
La característica fundamental de un sistema experto es que separa los conocimientos almacenados (base de conocimiento) del programa que los controla (motor de inferencia). Los datos propios de un determinado problema se almacenan en una base de datos aparte (base de hechos).
Una característica adicional deseable, y a veces fundamental, es que el sistema sea capaz de justificar su propia línea de razonamiento de forma inteligible por el usuario.
Los sistemas expertos siguen una filosofía diferente a los programas clásicos. Esto queda reflejado en la tabla 1, que resume las diferencias entre ambos tipos de procesamiento.
SISTEMA CLÁSICO SISTEMA EXPERTO
Conocimiento y procesamiento combinados en un programa Base de conocimiento separada del mecanismo de procesamiento
No contiene errores Puede contener errores
No da explicaciones, los datos sólo se usan o escriben Una parte del sistema experto la forma el módulo de explicación
Los cambios son tediosos Los cambios en las reglas son fáciles El sistema sólo opera completo El sistema puede funcionar con pocas reglas
Se ejecuta paso a paso La ejecución usa heurísticas y lógica Necesita información completa para operar Puede operar con información incompleta
Representa y usa datos Representa y usa conocimiento
Tabla 1. Comparación entre un sistema clásico de procesamiento y un sistema experto
LA RECIENTE HISTORIA DE LOS SISTEMAS EXPERTOS
Los sistemas expertos proceden inicialmente de la inteligencia artificial a mediados de los años sesenta. En ese período se creía que bastaban unas pocas leyes de razonamiento junto con potentes ordenadores para producir resultados brillantes. Un intento en ese sentido fue el llevado a cabo por los investigadores Alan Newell y Herbert Simon que desarrollaron un programa denominado GPS (General Problem Solver; solucionador general de problemas). Podía trabajar con criptoaritmética, con las torres de Hanoi y con otros problemas similares. Lo que no podía hacer el GPS era resolver problemas del mundo real, tales como un diagnóstico médico.
Algunos investigadores decidieron entonces cambiar por completo el enfoque del problema restringiendo su ambición a un dominio específico e intentando simular el razonamiento de un experto humano. En vez de dedicarse a computarizar la inteligencia general, se centraron en dominios de conocimiento muy concretos. De esta manera nacieron los sistemas expertos.
A partir de 1965, un equipo dirigido por Edward Feigenbaum, comenzó a desarrollar sistemas expertos utilizando bases de conocimiento definidas minuciosamente.
En 1967 se construye DENDRAL, que se considera como el primer sistema experto. Se utilizaba para identificar estructuras químicas moleculares a partir de su análisis espectrográfico.
Entre 1970 y 1980 se desarrolló MYCIN para consulta y diagnóstico de infecciones de la sangre. Este sistema introdujo nuevas características: utilización de conocimiento impreciso para razonar y posibilidad de explicar el proceso de razonamiento. Lo más importante es que funcionaba de manera correcta, dando conclusiones análogas a las que un ser humano daría tras largos años de experiencia. En MYCIN aparecen claramente diferenciados motor de inferencia y base de conocimientos. Al separar esas dos partes, se puede considerar el motor de inferencias aisladamente. Esto da como resultado un sistema vacío o shell (concha). Así surgió EMYCIN (MYCIN Esencial) con el que se construyó SACON, utilizado para estructuras de ingeniería, PUFF para estudiar la función pulmonar y GUIDON para elegir tratamientos terapéuticos.
En esa época se desarrollaron también: HERSAY, que intentaba identificar la palabra hablada, y PROSPECTOR, utilizado para hallar yacimientos de minerales. De este último derivó el shell KAS (Knowledge Adquisition System).
A partir de 1980 se ponen de moda los sistemas expertos, numerosas empresas de alta tecnología investigan en este área de la inteligencia artificial, desarrollando sistemas expertos para su comercialización. Se llega a la conclusión de que el éxito de un sistema experto depende casi exclusivamente de la calidad de su base de conocimiento. El inconveniente es que codificar la pericia de un experto humano puede resultar difícil, largo y laborioso.
Un ejemplo de sistema experto moderno es CASHVALUE, que evalúa proyectos de inversión y VATIA, que asesora acerca del impuesto sobre el valor añadido o I.V.A.
USOS DE UN SISTEMA EXPERTO
Un sistema experto es muy eficaz cuando tiene que analizar una gran cantidad de información, interpretándola y proporcionando una recomendación a partir de la misma. Un ejemplo es el análisis financiero, donde se estudian las oportunidades de inversión, dependiendo de los datos financieros de un cliente y de sus propósitos.
Para detectar y reparar fallos en equipos electrónicos, se utilizan los sistemas expertos de diagnóstico y depuración, que formulan listas de preguntas con las que obtienen los datos necesarios para llegar a una conclusión. Entonces recomiendan las acciones adecuadas para corregir los problemas descubiertos. Este tipo de sistemas se utilizan también en medicina (ej. MYCIN y PUFF), y para localizar problemas en sistemas informáticos grandes y complejos.
Los sistemas expertos son buenos para predecir resultados futuros a partir del conocimiento que tienen. Los sistemas meteorológicos y de inversión en bolsa son ejemplos de utilización en este sentido. El sistema PROSPECTOR es de este tipo.
La planificación es la secuencia de acciones necesaria para lograr una meta. Conseguir una buena planificación a largo plazo es muy difícil. Por ello, se usan sistemas expertos para gestionar proyectos de desarrollo, planes de producción de fábricas, estrategia militar y configuración de complejos sistemas informáticos, entre otros.
Cuando se necesita controlar un proceso tomando decisiones como respuesta a su estado y no existe una solución algorítmica adecuada, es necesario usar un sistema experto. Este campo comprende el supervisar fábricas automatizadas, factorías químicas o centrales nucleares. Estos sistemas son extraordinariamente críticos porque normalmente tienen que trabajar a tiempo real.
El diseño requiere una enorme cantidad de conocimientos debido a que hay que tener en cuenta muchas especificaciones y restricciones. En este caso, el sistema experto ayuda al diseñador a completar el diseño de forma competente y dentro de los límites de costes y de tiempo. Se diseñan circuitos electrónicos, circuitos integrados, tarjetas de circuito impreso, estructuras arquitectónicas, coches, piezas mecánicas,
...