ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Conversiones

carlosss96Monografía26 de Septiembre de 2015

1.404 Palabras (6 Páginas)203 Visitas

Página 1 de 6

Suma de polinomios

Para sumar dos polinomios se suman los coeficientes de los términos del mismo grado.

P(x) = 2x3 + 5x − 3

Q(x) = 4x − 3x2 + 2x3

1.Ordenamos los polinomios, si no lo están.

 Q(x) = 2x3 − 3x2 + 4x

P(x) +  Q(x) = (2x3 + 5x − 3) + (2x3 − 3x2 + 4x)

2.Agrupamos los monomios del mismo grado.

P(x) +  Q(x) = 2x3 + 2x3 − 3 x2 + 5x + 4x − 3

3.Sumamos los monomios semejantes.

P(x) +  Q(x) = 4x3− 3x2 + 9x − 3

Resta de polinomios

La resta de polinomios consiste en sumar al minuendo el opuesto del sustraendo.

P(x) − Q(x) = (2x3 + 5x − 3) − (2x3 − 3x2 + 4x)

P(x) −  Q(x) = 2x3 + 5x − 3 − 2x3 + 3x2 − 4x

P(x) −  Q(x) = 2x3 − 2x3 + 3x2 + 5x− 4x − 3

P(x) −  Q(x) = 3x2 + x − 3


Multiplicación de polinomios

Multiplicación de un número por un polinomio

Es otro polinomio que tiene de grado el mismo del polinomio y como coeficientes elproducto de los coeficientes del polinomio por el número.

3 · ( 2x3 − 3 x2 + 4x − 2) = 6x3 − 9x2 + 12x − 6

Multiplicación de un monomio por un polinomio

Se multiplica el monomio por todos y cada uno de los monomios que forman el polinomio.

3 x2 · (2x3 − 3x2 + 4x − 2) = 6x5 − 9x4 + 12x3 − 6x2

Multiplicación de polinomios

P(x) = 2x2 − 3    Q(x) = 2x3 − 3x2 + 4x

Se multiplica cada monomio del primer polinomio por todos los elementos segundo polinomio.

P(x) ·  Q(x) = (2x2 − 3) · (2x3 − 3x2 + 4x) =

= 4x5 − 6x4 + 8x3 − 6x3 + 9x2 − 12x =

Se suman los monomios del mismo grado.

= 4x5 − 6x4 + 2x3 + 9x2 − 12x

Se obtiene otro polinomio cuyo grado es la suma de los grados de los polinomios que se multiplican.

También podemos multiplicar polinomios de siguiente modo:

[pic 1]

División de polinomios

Resolver la división de polinomios:

P(x) = x5 + 2x3 − x − 8         Q(x) = x2 − 2x + 1

P(x) :  Q(x)

A la izquierda situamos el dividendo. Si el polinomio no es completo dejamos huecos en los lugares que correspondan.

[pic 2]

A la derecha situamos el divisor dentro de una caja.

Dividimos el primer monomio del dividendo entre el primer monomio del divisor.

x5 : x2 = x3

Multiplicamos cada término del polinomio divisor por el resultado anterior y lo restamos del polinomio dividendo:

[pic 3]

Volvemos a dividir el primer monomio del dividendo entre el primer monomio del divisor. Y el resultado lo multiplicamos por el divisor y lo restamos al dividendo.

2x4 : x2 = 2 x2

[pic 4]

Procedemos igual que antes.

5x3 : x2 = 5 x

[pic 5]

Volvemos a hacer las mismas operaciones.

8x2 : x2 = 8

[pic 6]

10x − 6 es el resto, porque su grado es menor que el del divisor y por tanto no se puede continuar dividiendo.

x3+2x2 +5x+8 es el cociente.


División por Ruffini

Si el divisor es un binomio de la forma x — a, entonces utilizamos un método más brevepara hacer la división, llamado regla de Ruffini.

Resolver por la regla de Ruffini la división:

(x4 −3x2 +2) : (x −3)

1Si el polinomio no es completo, lo completamos añadiendo los términos que faltan con ceros.

2Colocamos los coeficientes del dividendo en una línea.

3Abajo a la izquierda colocamos el opuesto del término independendiente del divisor.

4Trazamos una raya y bajamos el primer coeficiente.

[pic 7]

5Multiplicamos ese coeficiente por el divisor y lo colocamos debajo del siguiente término.

[pic 8]

6Sumamos los dos coeficientes.

[pic 9]

7Repetimos el proceso anterior.

[pic 10]

Volvemos a repetir el proceso.

[pic 11]

Volvemos a repetir.

[pic 12]

8El último número obtenido56 es el resto.

9El cociente es un polinomio de grado inferior en una unidad al dividendo y cuyos coeficientes son los que hemos obtenido.

x3 + 3 x2 + 6x +18


Ejercicios y problemas resueltos de polinomios

1Dados los polinomios:

P(x) = 4x2 − 1

Q(x) = x3 − 3x2 + 6x − 2

R(x) = 6x2 + x + 1

S(x) = 1/2x2 + 4

T(x) = 3/2x2 +5

U(x) = x2 + 2

Calcular:

1P(x) + Q (x) =

= (4x2 − 1) + ( x3 − 3x2 + 6x − 2) =

= x3 − 3x2 + 4x2+ 6x − 2 − 1 =

= x3 + x2+ 6x − 3

2P(x) − U (x) =

= (4x2 − 1) − (x2 + 2) =

= 4x2 − 1 − x2 − 2 =

3x2 − 3

3P(x) + R (x) =

= (4x2 − 1) + (6x2 + x + 1) =

= 4x2 + 6x2 + x − 1 + 1 =

10x2 + x

42P(x) − R (x) =

= 2(4x2 − 1) − (6x2 + x + 1) =

= 8x2 − 2 − 6x2 − x − 1 =

2x2 − x − 3

5S(x) + T(x) + U(x) =

= (1/2x2 + 4 ) + (3/2x2 +5 ) + (x2 + 2) =

= 1/2 x2 + 3/2 x+ x2 + 4 + 5+ 2 =

3x2 + 11

6S(x) − T (x) + U(x) =

= (1/2x2 + 4) − (3/2x2 +5) + (x2 + 2) =

= 1/2x2 + 4 − 3/2x2 − 5 + x2 + 2 =

1


2Dados los polinomios:

P(x) = x4 − 2x2 − 6x − 1

Q(x) = x3 − 6x2 + 4

...

Descargar como (para miembros actualizados) txt (7 Kb) pdf (110 Kb) docx (359 Kb)
Leer 5 páginas más »
Disponible sólo en Clubensayos.com