El concepto de sucesión en los números reales
luisbb55Trabajo3 de Junio de 2014
975 Palabras (4 Páginas)244 Visitas
Unidad 4.. (SERIES)
4.1 Definición de serie
una serie es la suma de los términos de una sucesión. Se representa una serie con términos an como la imagen que se muestra en el costado izquierdo donde n es el índice final de la serie. En terminología matemática se incluye sucesión para designar la existencia de elementos encadenados o sucesivos. Se excluye totalmente la sinonimia con el término serie.
Para entrar en materia la persona interesada en el tema debe de conocer el concepto de sucesión que se muestra a continuación:
El concepto de sucesión en los números reales se entiende de manera intuitiva cuando se asocia a un número natural un número real.
Termino de una sucesión: S: NàR
4.1.1 finito
Las series tienen una características fundamental con respecto a su límite y esta es un parte aguas para generalizar o discriminar los tipos de series a grandes rasgos, series finitas o series infinitas, en esta parte en cuestión las series finitas son objeto de análisis.
Observando la serie que se encuentra al costado izquierdo y mediante un análisis de sus componentes encontramos el límite superior determinado por “N”, esto significa que la serie esta superiormente acotada a cualquier numero natural, y por consecuente se puede deducir que es una serie finita puesto a que tiene un numero finito de elementos acotados por "N".
4.1.2 Infinito
Una parte importante del estudio del Cálculo trata sobre la representación de funciones como “sumas finitas”.
Realizar esto requiere extender la operación familiar de adición de un conjunto finito de números a la adición de una infinidad de números. Para llevar a cabo esto, se estudiara un proceso de limite en el que se consideran sucesiones.
Suponga que asociada a la sucesión
U1, U2, U3,…, Un,…
Se tiene una “suma infinita” denotada por
U1+ U2 + U3 +…+ Un+…
Pero ¿Qué es lo que significa esta expresión? Esto es, ¿Qué debe entenderse por la “suma” de n número infinito de términos, y en qué circunstancias dicha suma existe?
Teorema
Para tener una idea intuitiva del concepto de tal suma, suponga que un trozo de cuerda de 2 pie de longitud se corta a la mitad. Una de estas mitades de 1 pie de longitud se aparta y el otro y el otro se corta a la mitad otra vez. Uno de los trozos resultantes de ½ pie de longitud se aparta y el otro se corta a la mitad obteniéndose dos trozos, cada uno de 1/8 pie de longitud, otra vez, uno de los trozos se aparta y el otro se corta a la mitad. Si se continúa este procedimiento en forma indefinida, el número de pies de la suma de las longitudes de los trozos apartados puede considerarse como la suma infinita
1+ ½ + ¼ + 1/8+ 1/16 +…+ (1)/(2˄(N-1))
Como se inicio con un trozo de cuerda de 2 pie de longitud, nuestra intuición nos indica que la suma infinita (1) debe ser 2. Definiciones preliminares.
A partir de la sucesión
U1, U1, U3,…, Un,…
Se forma una nueva sucesión (Sn) sumando sucesivamente elementos de (Un) :
S1=U1
S2=U1+U2
S3=U1+U2+U3
S4=U1+U2´+U3+U
…...
Sn=U1+U2+U3+U4+…+Un
L a sucesión (An) obtenida de esta manera a partir de la sucesión (Sn) es una secesión de sumas parciales llamada serie infinita.
Definición de serie infinita;
Si (Un) es una sucesión y Sn=A1+A2+A3+A4+…+Un
Entonces ( Sn) es una secesión de sumas parciales denominada serie infinita y se denota por
Los números A1, A2, A3,…, An,… son los términos de la serie infinita
4.2 Serie
...