Grados de libertad elastica
Jorge Guillén VidalApuntes10 de Septiembre de 2021
2.244 Palabras (9 Páginas)132 Visitas
Sistemas con un solo grado de libertad
AVANCE
En este informe se formula el problema de la dinámica estructural para estructuras
simples que pueden idealizarse como sistemas con una masa concentrada soportados por
una estructura sin masa. Se consideran tanto las estructuras elásticas lineales, sometidas a una fuerza dinámica aplicada o a un movimiento del terreno inducido por un sismo.
ESTRUCTURAS SIMPLES
El estudio de la dinámica estructural se inicia con estructuras simples, como la pérgola que
se muestra en la fi gura 1.1.1 y el tanque de agua elevado de la fi gura 1.1.2. Se tiene interés en comprender la vibración de estas estructuras cuando se les aplica una fuerza lateral (u horizontal) en la parte superior o un movimiento horizontal del terreno debido a un sismo.
Estas estructuras se llaman simples porque pueden idealizarse como una masa m concentrada o agrupada soportada por una estructura sin masa con rigidez k en la dirección lateral. Dicha idealización es apropiada para esta pérgola con un techo de concreto pesado sostenido por columnas ligeras de tubo de acero, que pueden suponerse carentes de masa. El techo de concreto es muy rígido y la flexibilidad de la estructura en la dirección lateral (u horizontal) la proporcionan en su totalidad las columnas. El sistema idealizado se muestra
[pic 1]
Figura 1.1.1 Esta pérgola en el Hotel Macuto Sheraton, cerca de Caracas, Venezuela, se dañó por el sismo del 29 de julio de 1967. El evento con magnitud 6.5, que se ubicó a unas 15 millas del hotel, deformó en exceso las columnas de tubo de acero, produciendo un desplazamiento permanente del techo de 9 pulgadas. (Tomada de la colección Steinbrugge, Servicio de Información Nacional de Ingeniería Sísmica en la Universidad de California, Berkeley).
en la figura 1.1.3a con un par de columnas que soportan la longitud tributaria del techo de concreto. Este sistema tiene una masa concentrada m igual a la masa del techo mostrado, y su rigidez lateral k es igual a la suma de las rigideces de las columnas tubulares individuales. En la fi gura 1.1.3b se muestra una idealización similar, la cual es apropiada para el tanque cuando se encuentra lleno de agua. Como el chapoteo del agua no es posible en un tanque lleno, se trata de una masa concentrada m sostenida por una torre relativamente ligera que puede considerarse como carente de masa. La torre en voladizo que soporta el depósito de agua proporciona la rigidez lateral k a la estructura. Por el momento, se asumirá que el movimiento lateral de estas estructuras es pequeño suponiendo que las estructuras de soporte se deforman dentro de su límite elástico lineal.
Más adelante en este capítulo se verá que la ecuación diferencial que controla el desplazamiento lateral u(t) de estas estructuras idealizadas sin ninguna excitación externa—fuerza aplicada o movimiento del terreno— es
mü + ku = 0 (1.1.1)
donde los puntos sobre las variables indican diferenciación con respecto al tiempo, por lo que ü representa la velocidad de la masa y ü su aceleración. La solución de esta ecuación, presentada en el capítulo 2, mostrará que si a la masa de los sistemas idealizados de la figura 1.1.3 se le impone un desplazamiento inicial u (0), después se libera y se permite que vibre libremente, la estructura oscilará o vibrará hacia adelante y hacia atrás alrededor de
Estructuras simples
[pic 2]
Figura 1.1.2 Este tanque de concreto reforzado
sobre una sola columna de concreto de
40 pies de altura, que se encuentra cerca del
aeropuerto de Valdivia, no sufrió daños por los
sismos chilenos de mayo de 1960. Cuando el
tanque está lleno de agua, la estructura puede
analizarse como un sistema de un grado de
libertad. (Tomada de la colección Steinbrugge,
Servicio de Información Nacional de
Ingeniería Sísmica, Universidad de California,
Berkeley).
su posición de equilibrio inicial. Como se muestra en la fi gura 1.1.3c, se presenta el mismo desplazamiento máximo oscilación tras oscilación; estas oscilaciones continúan de manera indefinida y los sistemas idealizados nunca llegarían al reposo. Por supuesto, lo anterior no es una situación realista. La intuición sugiere que si el techo de la pérgola o la parte superior del tanque de agua fueran desplazados lateralmente mediante una cuerda y la cuerda se cortara de repente, la estructura oscilaría cada vez con menor amplitud y con el tiempo
[pic 3] [pic 4]
Figura 1.1.3 (a) Pérgola idealizada, (b) tanque de agua idealizado, (c) vibración libre
debida a un desplazamiento inicial.
se detendría. Experimentos de este tipo se realizaron en modelos de laboratorio de marcos de un solo nivel, y los registros medidos de su respuesta a la vibración libre se presentan en la figura 1.1.4. Como era de esperarse, el movimiento de los modelos estructurales decayó con el tiempo, siendo el decaimiento del modelo de plexiglás más rápido que el del marco de aluminio.
[pic 5]
(a)
Figura 1.1.4 (a) Modelos de marco de aluminio y
plexiglás montados sobre una pequeña mesa vibradora
que se usa para una demostración en clase de la
Universidad de California en Berkeley (cortesía de T.
Merport), (b) registro de la vibración libre del modelo
de aluminio, (c) registro de la vibración libre del
modelo de plexiglás.
[pic 6]
[pic 7]
El proceso mediante el cual la amplitud de la vibración disminuye de manera constante se denomina amortiguamiento. La energía cinética y la energía de deformación del sistema vibratorio se disipan mediante diversos mecanismos de amortiguamiento que se mencionarán más adelante. Por el momento, simplemente se reconoce que es necesario incluir un mecanismo de disipación de energía en la idealización estructural con el fi n de caracterizar el decaimiento del movimiento observado durante los ensayos de vibración
libre de una estructura. El elemento de amortiguamiento que se utiliza comúnmente es el amortiguador viscoso, en parte porque su manejo matemático es más sencillo. En los capítulos 2 y 3 se presentan otros mecanismos de disipación de la energía.
SISTEMAS DE UN GRADO DE LIBERTAD
El sistema considerado se muestra esquemáticamente en la fi gura 1.2.1. Se compone de una masa m concentrada en el nivel del techo, un marco sin masa que proporciona rigidez al sistema, y un amortiguador viscoso que disipa la energía de vibración del sistema. Se supone que la viga y las columnas son axialmente indeformables.
Este sistema puede considerarse como una idealización de una estructura de un nivel.
Cada elemento estructural (viga, columna, muro, etcétera) de la estructura real contribuye a las propiedades inerciales (masa), elásticas (rigidez o flexibilidad) y de disipación de la energía (amortiguamiento) de la estructura. Sin embargo, en el sistema idealizado, cada una de estas propiedades se concentra en tres componentes puros distintos: el componente de masa, el componente de rigidez y el componente de amortiguamiento.
El número de desplazamientos independientes requerido para definir las posiciones desplazadas de todas las masas en relación con su posición original se denomina el número de grados de libertad (GDL) para el análisis dinámico. De manera típica, se requieren más GDL para definir las propiedades de rigidez de una estructura que los GDL necesarios para representar las propiedades inerciales. Considere el marco de un nivel de la fi gura 1.2.1, restringido a moverse sólo en la dirección de la excitación. El problema de análisis estático debe formularse con tres GDL (el desplazamiento lateral y la rotación de los dos nudos) para determinar la rigidez lateral del marco (vea la sección 1.3). En contraste, la estructura tiene un solo GDL (el desplazamiento lateral) para el análisis dinámico si se idealiza con la masa concentrada en una ubicación, por lo regular al nivel del techo. Por lo tanto, se le llama sistema de un grado de libertad (1GDL).
...