ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Gravitacion Universal

kinfante15 de Noviembre de 2012

3.974 Palabras (16 Páginas)398 Visitas

Página 1 de 16

Contenido

GRAVITACION UNIVERSAL 4

DEFINICION: 4

La ley de la Gravitación Universal es una ley física clásica que describe lainteracción gravitatoria entre distintos cuerpos con masa. Ésta fue presentada porIsaac Newton en su libro Philosophiae Naturalis Principia Mathematica, publicado en 1687, donde establece por primera vez una relación cuantitativa (deducida empíricamente de la observación) de la fuerza con que se atraen dos objetos con masa. Así, Newton dedujo que la fuerza con que se atraen dos cuerpos de diferente masa únicamente depende del valor de sus masas y del cuadrado de la distancia que los separa. También se observa que dicha fuerza actúa de tal forma que es como si toda la masa de cada uno de los cuerpos estuviese concentrada únicamente en su centro, es decir, es como si dichos objetos fuesen únicamente un punto, lo cual permite reducir enormemente la complejidad de las interacciones entre cuerpos complejos. 4

ECUACIONES: 4

ASTRONIMIA EN GRECIA 9

FASES DE LA LUNA 11

TRABAJO: 14

POTENCIA 18

ENERGIA 19

GRAVITACION UNIVERSAL

DEFINICION:

La ley de la Gravitación Universal es una ley física clásica que describe la interacción gravitatoria entre distintos cuerpos con masa. Ésta fue presentada por Isaac Newton en su libro Philosophiae Naturalis Principia Mathematica, publicado en 1687, donde establece por primera vez una relación cuantitativa (deducida empíricamente de la observación) de la fuerza con que se atraen dos objetos con masa. Así, Newton dedujo que la fuerza con que se atraen dos cuerpos de diferente masa únicamente depende del valor de sus masas y del cuadrado de la distancia que los separa. También se observa que dicha fuerza actúa de tal forma que es como si toda la masa de cada uno de los cuerpos estuviese concentrada únicamente en su centro, es decir, es como si dichos objetos fuesen únicamente un punto, lo cual permite reducir enormemente la complejidad de las interacciones entre cuerpos complejos.

ECUACIONES:

Así, con todo esto resulta que la ley de la Gravitación Universal predice que la fuerza ejercida entre dos cuerpos de masas y separados una distancia es proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia, es decir

(1)

donde

es el módulo de la fuerza ejercida entre ambos cuerpos, y su dirección se encuentra en el eje que une ambos cuerpos.

es la constante de la Gravitación Universal.

AUTORES:

Trabajos de Hooke y disputa

Cuando el primer libro de los Principios de Newton fue expuesto a la Royal Society (la Real Academia de las Ciencias, de Inglaterra), el coetáneo Robert Hooke acusó a Newton de plagio por copiarle la idea de que la gravedad decaía como la inversa cuadrado de la distancia entre los centros de ambos cuerpos. Aunque esta controversia ha durado incluso hasta nuestros días, no hay datos claros sobre si realmente Newton conocía los trabajos de Hooke o no, ya que aunque ambos se carteaban regularmente, en ninguna de esas cartas Hooke menciona la ley de la inversa cuadrado, algo que Newton sí hizo con otros autores a los que sí agradeció1 los trabajos anteriores en los que basó sus ideas. Frente a esta proclama de Hooke de su idea de la inversa cuadrado, Newton reiteró que dicha idea en ningún caso era exclusivamente de él, sino que fueron varios autores en aquella época que ya se dieron cuenta de una dependencia de ese tipo, como reflejó en los agradecimientos de su publicación.

Relación con las Leyes de Kepler

Las Leyes de Kepler (enunciadas por Johannes Kepler) eran una serie de tres leyes empíricas que describían el movimiento de los planetas a través de las observaciones existentes. Aunque éstas describían dichos movimientos, los motivos de por qué éstos eran así o qué los causaban permanecían desconocidas tanto para Kepler como para sus coetáneos. Sin embargo, éstas supusieron un punto de partida para Newton, quien pudo dar una formulación matemática a dichas leyes, lo cual junto con sus propios logros condujeron a la formulación de la ley de la Gravitación Universal. En especial, a través de dicha ley Newton pudo dar la forma completa a la Tercera ley de Kepler, que describe que los cuadrados de los periodos de las órbitas de los planetas son proporcionales a los cubos de sus distancias al Sol. Es decir, que los planetas más alejados del Sol tardan más tiempo en dar una vuelta alrededor de éste (su año es más largo).

FORMULACIÓN GENERAL DE LA LEY DE LA GRAVITACIÓN UNIVERSAL

Forma vectorial

Aunque en la ecuación (1) se ha detallado la dependencia del valor de la fuerza gravitatoria para dos cuerpos cualesquiera, existe una forma más general con la que poder describir completamente dicha fuerza, ya que en lugar de darnos únicamente su valor, también podemos encontrar directamente su dirección. Para ello, se convierte dicha ecuación en forma vectorial, para lo cual únicamente hay que tener en cuenta las posiciones donde se localizan ambos cuerpos, referenciados a un sistema de referencia cualquiera. De esta forma, suponiendo que ambos cuerpos se encuentran en las posiciones , la fuerza (que será un vector ahora) vendrá dada por

(2)

donde es el vector unitario que va del centro de gravedad del objeto 1 al del objeto 2.

Cuerpos extensos

Se ha mencionado anteriormente que dichos cuerpos se pueden tratar como cuerpos puntuales, localizados en el centro de gravedad del cuerpo real, de tal forma que la descripción de esta fuerza se realiza trabajando únicamente con cuerpos puntuales (toda su masa se encuentra concentrada en su centro). Sin embargo, para algunos casos se puede hacer necesario tratar dichos cuerpos como lo que son, cuerpos con una extensión dada, es decir no puntuales. Un ejemplo donde este tratamiento es obligatorio es cuando se desea determinar cómo varía la fuerza de la gravedad a medida que nos situamos en el interior de un objeto, por ejemplo qué gravedad existe en el interior de la Tierra (en la región del manto terrestre o del núcleo).

En estos casos es necesario describir al objeto masivo como una distribución de masa, es decir describirlo a través de su densidad en cada punto del espacio. Así, se integra la fuerza que produce cada elemento infinitesimal del cuerpo sobre cada elemento del otro objeto, sumando a todos los elementos que existen en el volumen de ambos cuerpos, lo cual matemáticamente se traduce en una integral sobre el volumen de cada cuerpo, de tal forma que la fuerza gravitatoria entre ambos se obtiene como

(3)

Donde

son los volúmenes de los dos cuerpos.

son las densidades de los dos cuerpos en cada punto del espacio ( ).

Puede verse que si se tienen dos cuerpos finitos entonces la fuerza gravitatoria entre ambos viene acotada por:

Donde son las distancias mínimas y máximas entre los dos cuerpos en un instante dado.

Relación del peso de un cuerpo con la fuerza centrífuga de la tierra

Cuando un cuerpo describe un movimiento circular su velocidad va cambiando constantemente de dirección, motivo por el cual decimos que tiene una aceleración, no obstante que la magnitud de la velocidad no cambie. La aceleración que sufre el cuerpo se debe a una fuerza que actúa en forma constante, a lo largo de un radio, hacia el centro del círculo, dicha fuerza recibe el nombre de fuerza centrípeta. Si esta fuerza deja de actuar, el cuerpo sale disparado en forma tangencial a la curva, siguiendo un movimiento rectilíneo uniforme como resultado de la inercia del cuerpo que tratará de seguir en movimiento.

Si se pone a girar una piedra atada a un cordel, este ejerce una fuerza centrípeta constante para jalar a la piedra acelerándola hacia el centro del círculo. La piedra ejerce sobre el cordel una fuerza centrífuga que la impulsa hacia afuera, originando una tensión en el cordel que aumentará a medida que sea mayor la velocidad con que gira la piedra. La magnitud de la fuerza centrípeta es igual a la de la fuerza centrífuga pero actúan en sentidos opuestos. Para calcular el valor de la fuerza centrípeta o la fuerza centrífuga se usa la ecuación:

Donde:

Fc= Fuerza centrípeta o centrífuga en N

m= Masa del cuerpo que gira en kg

v= Velocidad lineal del cuerpo en m/s

r= Radio de la circunferencia en m

La fuerza centrífuga que produce el movimiento de la Tierra es mayor en el ecuador que en los polos. Esto se debe a que en un punto del ecuador se mueve más rápido que uno próximo a los polos. Por tanto, cuando la Tierra da una vuelta al rededor de su eje, el punto sobre el ecuador habrá recorrido aproximadamente 40,000 km, que es el valor de la longitud de la circunferencia en el ecuador, mientras que el punto próximo a uno de los polos recorrería aproximadamente 1000 km. Debido a ello, la velocidad lineal en el ecuador será mayor que cerca de los polos y consecuentemente será mayor también su fuerza centrífuga. Como la fuerza centrífuga actúa sobre los cuerpos tratando de alejarlos del centro del giro, la fuerza centrífuga de la Tierra empuja a los cuerpos alejándolos de su centro, reduciendo el efecto de la fuerza de gravedad.

En general: un cuerpo tiene mayor peso cerca de los polos que en el ecuador, toda vez que la fuerza centrífuga que trata de separarlo de la superficie es menor, además de encontrarse más cerca del centro de la Tierra debido al achatamiento de sus polos.

...

Descargar como (para miembros actualizados) txt (24 Kb)
Leer 15 páginas más »
Disponible sólo en Clubensayos.com