ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Intervalos

saudin11 de Junio de 2013

636 Palabras (3 Páginas)335 Visitas

Página 1 de 3

Un intervalo es un conjunto comprendido entre dos valores. Específicamente, un intervalo real es un subconjunto conexo de la recta real , es decir, una porción de recta entre dos valores dados.

CARACTERIZACIÓN:

El intervalo real es la parte de que verifica la siguiente propiedad:

Si e pertenecen a con , entonces para todo tal que , se tiene que pertenece a

Existen dos notaciones principales: en un caso se utilizan corchetes y corchetes invertidos, en los otros corchetes y paréntesis; ambas notaciones están descritas en el estándar internacional ISO 31-11.

Intervalo abierto

Intervalo abierto, (a, b), es el conjunto de todos los números reales mayores que a y menores que b.

No incluye los extremos.

• o bien

• Notación conjuntista o en términos de desigualdades:

Ejemplo:

Solución

Hemos estudiado que es un símbolo, no es un número real, por lo tanto, no podemos incluirlo como válido. En el lugar del corchete de cierre habremos de colocar un paréntesis:

27.15 ¿Cuál es el dominio de la función y = 2x?

Respuesta: Todos los números reales.

Intervalo cerrado

Intervalo cerrado, [a, b], es el conjunto de todos los números reales mayores o iguales que a y menores o iguales que b.

Sí incluye los extremos.

• Que se indica:

• Notación conjuntista o en términos de desigualdades

Intervalo semiabierto

Se denomina intervalo semiabierto al conjunto de los números reales que cumplen que , y similarmente, con al conjunto de los números reales que cumplen que

Incluye únicamente uno de los extremos.

• Con la notacion o bien indicamos.

En notación conjuntista:

• Y con la notación o bien ,

En notación conjuntista:

Intervalo infinito

Un intervalo (-∞, a) está formado por todos los números reales menores que a. El número a no está incluido.

• Un intervalo (a, +∞) está formado por todos los números reales mayores que a. El número a no está incluido.

• Un intervalo (-∞, a] está formado por todos los números reales menores o iguales que a. El número a sí está incluido.

• Un intervalo [a, +∞) está formado por todos los números reales mayores o iguales que a. El número a sí está incluido.

Incluye unos extremos e infinito por la derecha.

• Con la notacion indicamos.

En notación conjuntista:

Sin incluir el extremo:

• Y con la notación ,

Incluye un extremos e infinito por la izquierda.

• Con la notacion indicamos.

En notación conjuntista:

Sin incluir el extremo:

• Y con la notación ,

En notación conjuntista:

Para todo valor real:

Y con la notación ,

En notación conjuntista:

.

ABREVIAR EL VOCABULARIO

Hemos resuelto unos cuantos ejercicios cuyas respuestas contienen excesivas palabras. Es aconsejable que aprendamos, además de lo estudiado en intervalos, unos pocos símbolos que nos permitan escribir de un modo fácil, claro y breve parte del vocabulario que utilizamos en el estudio de las funciones:

Nota.- Probablemente encuentres símbolos diferentes con un significado similar.

Ejemplos:

1) se lee “A es el conjunto de los 5 primeros múltiplos de 2”.

2) se lee “5 no pertenece

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com