Los Polimeros
gabrieleitor00724 de Abril de 2013
2.462 Palabras (10 Páginas)359 Visitas
os polímeros (del Griego: poly: muchos y mero: parte, segmento) son macromoléculas (generalmente orgánicas) formadas por la unión de moléculas más pequeñas llamadas monómeros.
El almidón, la celulosa, la seda y el ADN son ejemplos de polímeros naturales, entre los más comunes de estos y entre los polímeros sintéticos encontramos el nailon, el polietileno y la baquelita.
Índice [ocultar]
La reacción por la cual se sintetiza un polímero a partir de sus monómeros se denomina polimerización. Según el mecanismo por el cual se produce la reacción de polimerización para dar lugar al polímero, ésta se clasifica como "polimerización por pasos" o como "polimerización en cadena". En cualquier caso, el tamaño de la cadena dependerá de parámetros como la temperatura o el tiempo de reacción, teniendo cada cadena un tamaño distinto y, por tanto, una masa molecular distinta, de ahí que se hable de masa promedio del polímero.
[editar]Tipos de polimerización
Existen dos tipos fundamentales de polimerización:
Polimerización por condensación.
En cada unión de dos monómeros se pierde una molécula pequeña, por ejemplo agua. Debido a esto, la masa molecular del polímero no es necesariamente un múltiplo exacto de la masa molecular del monómero. Los polímeros de condensación se dividen en dos grupos:
Los Homopolímeros.
Polietilenglicol
Siliconas
Los Copolímeros.
Baquelitas.
Poliésteres.
Poliamidas.
La polimerización en etapas (condensación) necesita al menos monómeros bifuncionales. Deben de saber que los polímeros pueden ser maquinables.
Ejemplo: HOOC--R1--NH2
Si reacciona consigo mismo, entonces:
2 HOOC--R1--NH2 <----> HOOC--R1--NH· + ·OC--R1--NH2 + H2O <----> HOOC--R1-NH--CO--R1--NH2 + H2O
Polimerización por adición.
En este tipo de polimerización la masa molecular del polímero es un múltiplo exacto de la masa molecular del monómero.
Suelen seguir un mecanismo en tres fases, con ruptura hemolítica:
Iniciación: CH2=CHCl + catalizador ⇒ •CH2–CHCl•
Propagación o crecimiento: 2 •CH2–CHCl• ⇒ •CH2–CHCl–CH2–CHCl•
Terminación: Los radicales libres de los extremos se unen a impurezas o bien se unen dos cadenas con un terminal neutralizado.
Tacticidad de poliestireno, atáctico, sindiotáctico, isotáctico.
La estructura puede ser lineal o también ramificada (aparte de poder presentar entrecruzamientos). También pueden adoptar otras estructuras, por ejemplo radiales.
Polimerización del estireno para dar poliestireno
n indica el grado de polimerización
Por otra parte, los polímeros pueden ser lineales, formados por una única cadena de monómeros, o bien esta cadena puede presentar ramificaciones de mayor o menor tamaño. También se pueden formar entrecruzamientos provocados por el enlace entre átomos de distintas cadenas.
La naturaleza química de los monómeros, su masa molecular y otras propiedades físicas, así como la estructura que presentan, determinan diferentes características para cada polímero. Por ejemplo, si un polímero presenta entrecruzamiento, el material será más difícil de fundir que si no presentara ninguno.
Los enlaces de carbono en los polímeros no son equivalentes entre sí, por eso dependiendo del orden estereoquímico de los enlaces, un polímero puede ser: atáctico (sin orden), isotáctico (mismo orden), o sindiotáctico (orden alternante) a esta conformación se la llama tacticidad. Las propiedades de un polímero pueden verse modificadas severamente dependiendo de su estereoquímica.
En el caso de que el polímero provenga de un único tipo de monómero se denomina homopolímero y si proviene de varios monómeros se llama copolímero o heteropolímero. Por ejemplo, el poliestireno es un homopolímero, pues proviene de un único tipo de monómero, el estireno, mientras que si se parte de estireno y acrilonitrilo se puede obtener un copolímero de estos dos monómeros.
En los heteropolímeros los monómeros pueden distribuirse de diferentes maneras, particularmente para polímeros naturales, los monómeros pueden repetirse de forma aleatoria, informativa (como en los polipéptidos de las proteínas o en los polinucleótidos de los ácidos nucleicos) o periódica, como en el peptidoglucano o en algunos polisacáridos.
Los monómeros que conforman la cadena de un copolímero se pueden ubicar en la cadena principal alternándose según diversos patrones, denominándose copolímero alternante, copolímero en bloque, copolímero aleatorio, copolímero de injerto. Para lograr este diseño, la reacción de polimerización y los catalizadores deben ser los adecuados.
a) Homopolímero b) Copolímero alternante
c) Copolímero en bloque d) Copolímero aleatorio
e) Copolímero de injerto
Finalmente, los extremos de los polímeros pueden ser distintos que el resto de la cadena polimérica, sin embargo es mucho más importante el resto de la cadena que estos extremos debido a que la cadena es de una gran extensión comparada con los extremos.
[editar]Propiedades
Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas.
Puedes añadirlas así o avisar al autor principal del artículo en su página de discusión pegando: {{subst:Aviso referencias|Polímero}} ~~~~
Fotoconductividad
Electrocromismo
Fotoluminiscencia (fluorescencia y fosforescencia)
[editar]Propiedades eléctricas
Los polímeros industriales en general suelen ser malos conductores eléctricos, por lo que se emplean masivamente en la industria eléctrica y electrónica como materiales aislantes. Las baquelitas (resinas fenólicas) sustituyeron con ventaja a las porcelanas y el vidrio en el aparellaje de baja tensión hace ya muchos años; termoplásticos como el PVC y los PE, entre otros, se utilizan en la fabricación de cables eléctricos, llegando en la actualidad a tensiones de aplicación superiores a los 20 KV, y casi todas las carcasas de los equipos electrónicos se construyen en termoplásticos de magníficas propiedades mecánicas, además de eléctricas y de gran duración y resistencia al medio ambiente, como son, por ejemplo, las resinas ABS.
Para evitar cargas estáticas en aplicaciones que lo requieran, se ha utilizado el uso de antiestáticos que permite en la superficie del polímero una conducción parcial de cargas eléctricas.
Evidentemente la principal desventaja de los materiales plásticos en estas aplicaciones está en relación a la pérdida de características mecánicas y geométricas con la temperatura. Sin embargo, ya se dispone de materiales que resisten sin problemas temperaturas relativamente elevadas (superiores a los 200 °C).
Las propiedades eléctricas de los polímeros industriales están determinadas principalmente, por la naturaleza química del material (enlaces covalentes de mayor o menor polaridad) y son poco sensibles a la microestructura cristalina o amorfa del material, que afecta mucho más a las propiedades mecánicas. Su estudio se acomete mediante ensayos de comportamiento en campos eléctricos de distinta intensidad y frecuencia. Seguidamente se analizan las características eléctricas de estos materiales.
Los polímeros conductores fueron desarrollados en 1974 y sus aplicaciones aún están siendo estudiadas.
[editar]Propiedades físicas de los polímeros.
Estudios de difracción de rayos X sobre muestras de polietileno comercial, muestran que este material, constituido por moléculas que pueden contener desde 1.000 hasta 150.000 grupos CH2 – CH2 presentan regiones con un cierto ordenamiento cristalino, y otras donde se evidencia un carácter amorfo: a éstas últimas se les considera defectos del cristal. En este caso las fuerzas responsables del ordenamiento cuasicristalino, son las llamadas fuerzas de van der Waals. En otros casos (nylon 66) la responsabilidad del ordenamiento recae en los enlaces de H. La temperatura tiene mucha importancia en relación al comportamiento de los polímeros. A temperaturas más bajas los polímeros se vuelven más duros y con ciertas características vítreas debido a la pérdida de movimiento relativo entre las cadenas que forman el material. La temperatura en la cual funden las zonas cristalinas se llama temperatura de fusión (Tf) Otra temperatura importante es la de descomposición y es conveniente que sea bastante superior a Tf.
[editar]Las propiedades mecánicas
Son una consecuencia directa de su composición así como de la estructura molecular tanto a nivel molecular como supermolecular. Actualmente las propiedades mecánicas de interés son las de los materiales polímeros y éstas han de ser mejoradas mediante la modificación de la composición o morfología por ejemplo, cambiar la temperatura a la que los polímeros se ablandan y recuperan el estado de sólido elástico o también el grado global del orden tridimensional. Normalmente el incentivo de estudios sobre las propiedades mecánicas es generalmente debido a la necesidad de correlacionar
...