ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Límite de una sucesión

juliokruspeSíntesis18 de Septiembre de 2014

768 Palabras (4 Páginas)425 Visitas

Página 1 de 4

Límite de una sucesión[editar]

La sucesión para converge al valor 0, como se puede ver en la ilustración.

Artículo principal: Límite de una sucesión

La definición de límite matemático para el caso de una sucesión nos indica intuitivamente que los términos de la sucesión se aproximan arbitrariamente a un único número o punto , si existe, para valores grandes de . Esta definición es muy parecida a la definición del límite de una función cuando tiende a .

Formalmente, se dice que la sucesión tiende hasta su límite , o que converge o es convergente (a ), y se denota como:

si y sólo si para todo valor real ε>0 se puede encontrar un número natural tal que todos los términos de la sucesión, a partir de un cierto valor natural mayor que converjan a cuando crezca sin cota. Escrito en un lenguaje formal, y de manera compacta:

Este límite, si existe, se puede demostrar que es único. Si los términos de la sucesión no convergen a ningún punto específico, entonces se dice que la sucesión es divergente.

Límite de una función[editar]

Visualización en un sistema decoordenadas cartesianas de los parámetros utilizados en la definición de límite.

Artículo principal: Límite de una función

En análisis real para funciones de una variable, se puede hacer una definición de límite similar a la de límite de una sucesión, en la cual, los valores que toma la función dentro de un intervalo o radio de convergencia se van aproximando a un punto fijado c, independientemente de que éste pertenezca al dominio de la función. El punto c es punto de acumulación del dominio de la función.1 Esto se puede generalizar aún más a funciones de varias variables o funciones en distintos espacios métricos.

Informalmente, se dice que el límite de la función f(x) es L cuando x tiende a c, y se escribe:

si se puede encontrar para cada ocasión un x suficientemente cerca de c tal que el valor de f(x) sea tan próximo a L como se desee.

Para un mayor rigor matemático se utiliza la definición épsilon-delta de límite, que es más estricta y convierte al límite en una gran herramienta del análisis real. Su definición es la siguiente:

"El límite de f(x) cuando x tiende a c es igual a L si y sólo si para todo número real ε mayor que cero existe un número real δ mayor que cero tal que si la distancia entre x y c es menor que δ, entonces la distancia entre la imagen de x y L es menor que ε unidades".

Esta definición, se puede escribir utilizando términos lógico-matemáticos y de manera compacta:

Esta definición es equivalente al límite de una sucesión, una función es continua si:

Para la función f(x) = x2 - 9/ x - 3 se tiene límite en el punto 3, que no está en el dominio, cuando los valores del dominio se acercan a 3, los valores de la función se aproximan a 6. 3 es un punto de acumulación de Df2

Importancia[editar]

El concepto de límite es importante en análisis matemático; una herramienta básica para definir la derivada e integral definida, la existencia de número real al definir por un sistema de intervalos encajados, la potencia real de un real positivo. El plurimilenario caso de π, genial creatura de Arquímedes.3

Límites laterales[editar]

Además del límite ordinario en el sentido anterior es posible definir para funciones de una variable los límites unilaterales por la derecha y por la izquierda. El límite por la derecha (cuando existe) es el límite de la sucesión:

Análogamente el límite por la izquierda (cuando existe) es:

para una función continua en c se tiene que .

P

Límite de una sucesión de conjuntos[editar]

Artículo

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com