ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Quimica Estado Gaseoso

bacalladomc121 de Julio de 2014

5.084 Palabras (21 Páginas)293 Visitas

Página 1 de 21

Estado Gaseoso

Se denomina gas al estado de agregación de la materia en el cual, bajo ciertas condiciones de temperatura y presión, sus moléculas intereaccionan solo débilmente entre sí, sin formar enlaces moleculares, adoptando la forma y el volumen del recipiente que las contiene y tendiendo a separarse, esto es, expandirse, todo lo posible por su alta energía cinética. Los gases son fluidos altamente compresibles, que experimentan grandes cambios de densidad con la presión y la temperatura. Las moléculas que constituyen un gas casi no son atraídas unas por otras, por lo que se mueven en el vacío a gran velocidad y muy separadas unas de otras, explicando así las propiedades:

• Las moléculas de un gas se encuentran prácticamente libres, de modo que son capaces de distribuirse por todo el espacio en el cual son contenidos. Las fuerzas gravitatorias y de atracción entre las moléculas son despreciables, en comparación con la velocidad a que se mueven sus moléculas.

• Los gases ocupan completamente el volumen del recipiente que los contiene.

• Los gases no tienen forma definida, adoptando la de los recipientes que las contiene.

• Pueden comprimirse fácilmente, debido a que existen enormes espacios vacíos entre unas moléculas y otras.

A temperatura y presión ambientales los gases pueden ser elementos como el hidrógeno, el oxígeno, el nitrógeno, el cloro, el flúor y los gases nobles, compuestos como el dióxido de carbono o el propano, o mezclas como el aire.

Los vapores y el plasma comparten propiedades con los gases y pueden formar mezclas homogéneas, por ejemplo vapor de agua y aire, en conjunto son conocidos como cuerpos gaseosos, estado gaseoso o fase gaseosa.

6. Teoría cinética de los gases.

La termodinámica se ocupa solo de variables microscópicas, como la presión, la temperatura y el volumen. Sus leyes básicas, expresadas en términos de dichas cantidades, no se ocupan para nada de que la materia esta formada por átomos. Sin embargo, la mecánica estadística, que estudia las mismas áreas de la ciencia que la termodinámica, presupone la existencia de los átomos. Sus leyes básicas son las leyes de la mecánica, las que se aplican en los átomos que forman el sistema.

No existe una computadora electrónica que pueda resolver el problema de aplicar las leyes de la mecánica individualmente a todos los átomos que se encuentran en una botella de oxigeno, por ejemplo. Aun si el problema pudiera resolverse, los resultados de estos cálculos serian demasiados voluminosos para ser útiles.

Afortunadamente, no son importantes las historias individuales detalladas de los átomos que hay en un gas, si sólo se trata de determinar el comportamiento microscópico del gas. Así, aplicamos las leyes de la mecánica estadísticamente con lo que nos damos cuenta de que podemos expresar todas las variables termodinámica como promedios adecuados de las propiedades atómicas. Por ejemplo, la presión ejercida por un gas sobre las paredes de un recipiente es la rapidez media, por unidad de área, a la que los átomos de gas transmiten ímpetu a la pared, mientras chocan con ella. En realidad el numero de átomos en un sistema microscópico, casi siempre es tan grande, que estos promedios definen perfectamente las cantidades.

Podemos aplicar las leyes de la mecánica estadísticamente a grupos de átomos en dos niveles diferentes. Al nivel llamado teoría cinética, en el que procederemos en una forma más física, usando para promediar técnicas matemáticas bastantes simples.

En otro nivel, podemos aplicar las leyes de la mecánica usando técnicas que son más formales y abstractas que las de la teoría cinética. Este enfoque desarrollado por J. Willard Gibbs (1839-1903) y por Ludwig Boltzmann (1844-1906)entre otros, se llama mecánica estadística, un termino que incluye a la teoría cinética como una de sus ramas. Usando estos métodos podemos derivar las leyes de la termodinámica, estableciendo a esta ciencia como una rama de la mecánica. El florecimiento pleno de la mecánica estadística (estadística cuántica), que comprende la aplicación estadística de las leyes de la mecánica cuántica, más que las de la mecánica clásica para sistemas de muchos átomos.

Gas ideal : Una descripción macroscópica.

Hagamos que cierta cantidad de gas esté confinada en un recipiente del volumen V. Es claro que podemos reducir su densidad, retirando algo de gas en el recipiente, o colocando el gas en un recipiente más grande. Encontramos experimentalmente que a densidades lo bastante pequeñas, todos los gases tienden a mostrar ciertas relaciones simples entre las variables termodinámicas p,V y T. Esto sugiere el concepto de un gas ideal, uno que tendrá el mismo comportamiento simple, bajo todas las condiciones de temperatura y presión.

Dado cualquier gas en un estado de equilibrio térmico, podemos medir su presión p, su temperatura T y su volumen V. Para valores suficientes pequeños la densidad, los experimentos demuestran que (1) para una masa dada de gas que se mantiene a temperatura constante, la presión es inversamente proporcional al volumen (ley de Boyle), y (2) para una masa dada de gas que se mantiene a presión constante, el volumen es directamente proporcional a la temperatura (ley de Charles y Gay Lussac). Podemos resumir estos resultados experimentales por medio de la relación:

una constante (para una masa fija de gas).

El volumen ocupado por un gas a una presión y temperaturas dadas, es proporcional a la masa del gas. Así, la constante de la ecuación una constante, también debe ser proporcional a la masa del gas, por ello escribimos la constante de la ecuación una constante; como nR, donde n es el numero de moles de gas en la muestra y R es una constante que debe determinarse en forma experimental para cada gas. Los experimentos demuestran que, a densidades suficientes pequeñas, R tiene el mismo valor para todos los gases, a saber,

R=8.314 J/mol K = 1.986 cal/mol K

R se llama la constante universal de los gases. Con esto escribimos la ecuación una constante, en la forma:

pV=nRT,

y definimos a un gas ideal, como aquel que obedece esta relación bajo todas las condiciones. No existe algo que seaen verdad un gas ideal, pero sigue siendo concepto muy util y sencillo, relacionado realmente, con el hecho que todos los gases reales se aproximan a la abtracción de los gases ideales en su comportamiento, siempre que la densidad sea suficientemente pequeña. pV=nRT se llama ecuación de estado de un gas ideal.

Si pudieramos llenar al bulbo de un termonetro de gas (ideal) a volumen constante, un gas ideal, de veriamos, deacuerdo con la ecuación pV=nRT, que podemos definir la temperatura en terminos de sus lecturas de presión; esto es: (gas ideal).

Aquí es la presión del gas en el punto triple del agua, en el que la temperatura es por definición 273.16 K. En la practica, debemos llenar nuestro termometro con un gas real y medir la temperatura extrapolando a la densidad cero, usando la ecuación:

(gas real).

Gas ideal: una descripción microscópica.

Desde el punto de vista microscópico, definimos a un gas ideal haciendo las siguientes suposiciones, con lo que nuestra tarea será la de aplicar las leyes de la mecánica clásica, estadísticamente, a los átomos del gas y demostrar que nuestra definición microscópica es consecuente con la definición macroscópica de la sección procedente:

1.- Un gas esta formado por partículas llamadas moléculas. Dependiendo del gas, cada molécula esta formada por un átomo o un grupo de átomos. Si el gas es un elemento o un compuesto en su estado estable, consideramos que todas sus moléculas son idénticas.

2.- Las moléculas se encuentran animadas de movimiento aleatorio y obedecen las leyes de Newton del movimiento. Las moléculas se mueven en todas direcciones y a velocidades diferentes. Al calcular las propiedades del movimiento suponemos que la mecánica newtoniana se puede aplicar en el nivel microscópico. Como para todas nuestras suposiciones, esta mantendrá o desechara, dependiendo de si los hechos experimentales indican o no que nuestras predicciones son correctas.

3.- El numero total de moléculas es grande. La dirección y la rapidez del movimiento de cualquiera de las moléculas puede cambiar bruscamente en los choques con las paredes o con otras moléculas. Cualquiera de las moléculas en particular, seguirá una trayectoria de zigzag, debido a dichos choques. Sin embargo, como hay muchas moléculas, suponemos que el gran numero de choques resultante mantiene una distribución total de las velocidades moleculares con un movimiento promedio aleatorio,

4.- El volumen de las moléculas es una fracción despreciablemente pequeña del volumen ocupado por el gas. Aunque hay muchas moléculas, son extremadamente pequeñas. Sabemos que el volumen ocupado por una gas se puede cambiar en un margen muy amplio, con poca dificultad y que, cuando un gas se condensa, el volumen ocupado por el liquido puede ser miles de veces menor que la del gas se condensa, el volumen ocupado por el liquido puede ser miles de veces menor que el del gas. De aquí que nuestra suposición es posible.

5.- No actúan fuerzas apreciables sobre las moléculas, excepto durante los choques. En el grado de que esto sea cierto, una molécula se moverá con velocidad uniformemente los choques. Como hemos supuesto que las moléculas son tan pequeñas, la distancia media entre ellas es grande en comparación con el tamaño de una de las moléculas. De aquí que suponemos que el alcance de las fuerzas moleculares es comparable al tamaño molecular.

6.-

...

Descargar como (para miembros actualizados) txt (31 Kb)
Leer 20 páginas más »
Disponible sólo en Clubensayos.com