RETÍCULO ENDOPLASMATICO (RUGOSO Y LISO)
sergio_hades_9215 de Mayo de 2012
3.745 Palabras (15 Páginas)1.592 Visitas
RETÍCULO ENDOPLÁSMICO (RUGOSO y LISO)
El retículo endoplasmático está constituido por una amplia red de conductos y cavidades denominadas cisternas, distribuidas por todo el citoplasma y limitadas por una membrana cuya estructura molecular es idéntica a la de la membrana plasmática.
Las cisternas o cavidades de este retículo pueden tener formas muy variadas, siendo la mayoría de las veces aplanadas y los menos son tubos contorneados y ramificados. En ocasiones, especialmente en las células vegetales. Presentan enormes dilataciones que darán lugar a las vacuolas.
El retículo endoplasmático se continúa con la membrana nuclear y en muchas ocasiones establece también comunicación con el exterior mediante poros que se abren en la membrana plasmática. De esta forma existe una continuidad entre la membrana plasmática y la membrana nuclear a través del retículo endoplasmático. Se distinguen dos tipos de retículo endoplasmático dependiendo de si poseen ribosomas o no en su membrana.
Si poseen ribosomas se le denomina retículo emdoplásmatico rugoso debido a que al microscopio electrónico parece arrugado y si no los tiene se le denomina retículo endoplasmático liso. Sus funciones son diferentes y las estudiaremos aparte.
REVISAR SU ESTRUCTURA Y SU COMPOSICIÓN QUÍMICA.
El retículo endoplasmático está constituido por una amplia red de conductos y cavidades denominadas cisternas, distribuidas por todo el citoplasma y limitadas por una membrana cuya estructura molecular es idéntica a la de la membrana plasmática (fosfolípidos y una pequeña fracción de proteínas estructurales).
Fosfolípidos:
Los fosfolípidos son un tipo de lípidos anfipáticos compuestos por una molécula de glicerol, a la que se unen dos ácidos grasos (1,2-diacilglicerol) y un grupo fosfato. El fosfato se une mediante un enlace fosfodiéster a otro grupo de átomos, que generalmente contienen nitrógeno, como colina, serina o etanolamina y muchas veces posee una carga eléctrica. Todas las membranas plasmáticas activas de las células poseen una bicapa de fosfolípidos.
Los fosfolípidos más abundantes son la fosfatidiletanolamina (o cefalina), fosfatidilinositol, ácido fosfatídico, fosfatidilcolina (o lecitina) y fosfatidilserina.
Figura. P, cabeza polar; U, colas apolares.
Funciones de los fosfolípidos:
Componente estructural de la membrana celular:
El carácter anfipático de los fosfolípidos les permite su autoasociación a través de interacciones hidrofóbicas entre las porciones de ácido graso de cadena larga de moléculas adyacentes de tal forma que las cabezas polares se proyectan fuera, hacia el agua donde pueden interaccionar con las moléculas proteicas y la cola apolar se proyecta hacia el interior de la bicapa lipídica.
Activación de enzimas: Los fosfolípidos participan como segundos mensajeros en la transmisión de señales al interior de la célula como el diacilglicerol o la fosfatidilcolina que activa a la betahidroxibutirato deshidrogenasa que es una enzima mitocondrial.
Componentes del surfactante pulmonar: El funcionamiento normal del pulmón requiere del aporte constante de un fosfolípido poco común denominado dipalmitoílfosfatidilcolina. Este fosfolípido tensoactivo es producido por las células epiteliales del tipo II e impide la atelectasia al final de la fase de espiración de la respiración.
Componente detergente de la bilis: Los fosfolípidos, y sobre todo la fosfatidilcolina de la bilis, solubilizan el colesterol. Una disminución en la producción de fosfolípido y de su secreción a la bilis provoca la formación de cálculos biliares de colesterol y pigmentos biliares.
Síntesis de sustancias de señalización celular: El fosfatidinol y la fosfatidilcolina actúan como donadores de ácido araquidónico para la síntesis de prostaglandinas, tromboxanos, leucotrienos y compuestos relacionados.
Proteinas estructurales:
La palabra proteína proviene del griego protop (lo primero, lo principal, lo más importante). Las proteínas son las responsables de la formación y reparación de los tejidos, interviniendo en el desarrollo corporal e intelectual.
Las proteínas son biopolímeros (macromoléculas orgánicas), de elevado peso molecular, constituidas básicamente por carbono (C), hidrógeno (H), oxígeno (O) y nitrógeno (N); aunque pueden contener también azufre (S) y fósforo (P) y, en menor proporción, hierro (Fe), cobre (Cu), magnesio (Mg), yodo (Y), entre otros elementos.
Estos elementos químicos se agrupan para formar unidades estructurales (monómeros) llamados aminoácidos (aa), a los cuales se consideran como los "ladrillos de los edificios moleculares proteicos". Estos edificios macromoleculares se construyen y desmoronan con gran facilidad dentro de las células, y a ello debe precisamente la materia viva su capacidad de crecimiento, reparación y regulación.
La unión de un bajo número de aminoácidos da lugar a un péptido; si el número de aa que forma la molécula no es mayor de 10, se denomina oligopéptido; si es superior a 10, se llama polipéptido y si el número es superior a 50 aa, se habla ya de proteína.
Se clasifican, de forma general, en Holoproteínas y Heteroproteínas:
Se dice que son Holoproteínas cuando están formadas, sólo por aminoácidos.
Se dice que son Heteroproteínas cuando están formadas por aminoácidos más otras moléculas o elementos adicionales no aminoacídicos.
La organización de una proteína viene definida por cuatro niveles estructurales denominados: estructura primaria, estructura secundaria, estructura terciaria y estructura cuaternaria. Cada una de estas estructuras informa de la disposición de la anterior en el espacio.
Estructura primaria:
La estructura primaria es la secuencia de aminoácidos de la proteína. Nos indica qué aminoácidos componen la cadena polipeptídica y el orden en que dichos aminoácidos se encuentran. La función de una proteína depende de su secuencia y de la forma que ésta adopte.
Estructura secundaria:
La estructura secundaria es la disposición de la secuencia de aminoácidos en el espacio. Los aminoácidos, a medida que van siendo enlazados durante la síntesis de proteínas y gracias a la capacidad de giro de sus enlaces, adquieren una disposición espacial estable.
Existen dos tipos de estructura secundaria:
1.- La a (alfa)-hélice
Esta estructura se forma al enrollarse helicoidalmente sobre sí misma la estructura primaria.
Se debe a la formación de enlaces de hidrógeno entre el -C=O de un aminoácido y el -NH- del cuarto aminoácido que le sigue.
2.- La conformación beta.
En esta disposición los aminoácidos no forman una hélice sino una cadena en forma de zigzag, denominada disposición en lámina plegada.
Presentan esta estructura secundaria la queratina de la seda o fibroína.
Estructura terciaria:
La estructura terciaria informa sobre la disposición de la estructura secundaria de un polipéptido al plegarse sobre sí misma originando una conformación globular.En definitiva, es la estructura primaria la que determina cuál será la secundaria y por tanto la terciaria.Esta conformación globular facilita la solubilidad en agua y así realizar funciones de transporte, enzimáticas, hormonales, etc.
Esta conformación globular se mantiene estable gracias a la existencia de enlaces entre los radicales R de los aminoácidos. Aparecen varios tipos de enlaces:
1.- el puente disulfuro entre los radicales de aminoácidos que tienen azufre.
2.- los puentes de hidrógeno.
3.- los puentes eléctricos.
4.- las interacciones hidrófobas.
Estructura cuaternaria:
Esta estructura informa de la unión, mediante enlaces débiles (no covalentes) de varias cadenas polipeptídicas con estructura terciaria, para formar un complejo proteico. Cada una de estas cadenas polipeptídicas recibe el nombre de protómero.
El número de protómeros varía desde dos, como en la hexoquinasa; cuatro, como en la hemoglobina, o muchos, como la cápsida del virus de la poliomielitis, que consta de sesenta unidades proteicas.
Funciones y ejemplos de proteínas
Las proteínas determinan la forma y la estructura de las células y dirigen casi todos los procesos vitales. Las funciones de las proteínas son específicas de cada una de ellas y permiten a las células mantener su integridad, defenderse de agentes externos, reparar daños, controlar y regular funciones, etc...
Todas las proteínas realizan su función de la misma manera: por unión selectiva a moléculas. Las proteínas estructurales se agregan a otras moléculas de la misma proteína para originar una estructura mayor. Sin embargo, otras proteínas se unen a moléculas distintas: los anticuerpos, a los antígenos específicos; la hemoglobina, al oxígeno; las enzimas, a sus sustratos; los reguladores de la expresión genética, al ADN; las hormonas, a sus receptores específicos; etc...
A continuación se exponen algunos ejemplos de proteínas y las funciones que desempeñan:
Función estructural:
*Algunas proteínas constituyen estructuras celulares
*Ciertas glucoproteínas forman parte de las membranas celulares y actúan como receptores o facilitan el transporte de sustancias.
*Las histonas, forman parte de los cromosomas que regulan la expresión de los genes.
*Otras proteínas confieren elasticidad y resistencia a órganos
...