COMPUERTAS LOGICAS DIGITALES
Dark209412 de Mayo de 2015
2.566 Palabras (11 Páginas)353 Visitas
TITULO
“COMPUERTAS LOGICAS DIGITALES”
OBJETIVOS
Consolidar conocimientos teóricos sobre compuertas digitales aprendiendo el manejo practico de estas, para su futura aplicación en circuitos electrónicos de mayor complejidad
Aprender interpretar y ejecutar guías de procedimientos técnicos para la ejecución de trabajos prácticos, que le será de mucha utilidad en su futura vida profesional.
Familiarizarnos con los dispositivos lógicos digitales TTL y sus características principales de funcionamiento.
MARCO TEORICO
Compuertas lógicas
Definición
Es un dispositivo electrónico con una función booleana. Suman, multiplican, niegan o afirman, incluyen o excluyen según sus propiedades lógicas. Se pueden aplicar a tecnología electrónica, eléctrica, mecánica, hidráulica y neumática. Son circuitos de conmutación integrados en un chip.
Claude Elwood Shannon experimentaba con relés o interruptores electromagnéticos para conseguir las condiciones de cada compuerta lógica, por ejemplo, para la función booleana Y (AND) colocaba interruptores en circuito serie, ya que con uno solo de éstos que tuviera la condición «abierto», la salida de la compuerta Y sería = 0, mientras que para la implementación de una compuerta O (OR), la conexión de los interruptores tiene una configuración en circuito paralelo.
La tecnología microelectrónica actual permite la elevada integración de transistores actuando como conmutadores en redes lógicas dentro de un pequeño circuito integrado. El chip de la CPU es una de las máximas expresiones de este avance tecnológico.
Lógica directa
Puerta SÍ o Buffer
La puerta lógica SÍ, realiza la función booleana igualdad. En la práctica se suele utilizar como amplificador de corriente o como seguidor de tensión, para adaptar impedancias (buffer en inglés).
Su tabla de verdad es la siguiente:
Tabla de verdad puerta SI
Entrada Salida
0 0
1 1
Puerta AND
La puerta lógica Y, más conocida por su nombre en inglés AND ( ), realiza la función booleana de producto lógico. Su símbolo es un punto (•), aunque se suele omitir. Así, el producto lógico de las variables A y B se indica como AB, y se lee A y B o simplemente A por B.
Su tabla de verdad es la siguiente:
Tabla de verdad puerta AND
Entrada Entrada Salida
0 0 0
0 1 0
1 0 0
1 1 1
Así, desde el punto de vista de la aritmética módulo 2, la compuerta AND implementa el producto módulo 2.
Puerta OR
La puerta lógica O, más conocida por su nombre en inglés OR ( ), realiza la operación de suma lógica.
Su tabla de verdad es la siguiente:
Tabla de verdad puerta OR
Entrada Entrada Salida
0 0 0
0 1 1
1 0 1
1 1 1
Podemos definir la puerta O como aquella que proporciona a su salida un 1 lógico si al menos una de sus entradas está a 1.
Puerta OR-exclusiva (XOR)
La puerta lógica OR-exclusiva, más conocida por su nombre en inglés XOR, realiza la función booleana A'B+AB'. Su símbolo es (signo más "+" inscrito en un círculo). En la figura de la derecha pueden observarse sus símbolos en electrónica.
Su tabla de verdad es la siguiente:
Tabla de verdad puerta XOR
Entrada Entrada Salida
0 0 0
0 1 1
1 0 1
1 1 0
Se puede definir esta puerta como aquella que da por resultado uno, cuando los valores en las entradas son distintos. ej: 1 y 0, 0 y 1 (en una compuerta de dos entradas). Se obtiene cuando ambas entradas tienen distinto valor.
Si la puerta tuviese tres o más entradas, la XOR tomaría la función de suma de paridad, cuenta el número de unos a la entrada y si son un número impar, pone un 1 a la salida, para que el número de unos pase a ser par.
XOR de tres entradas
Entrada Entrada Entrada Salida
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
Desde el punto de vista de la aritmética módulo 2, la puerta XOR implementa la suma módulo 2, pero mucho más simple de ver, la salida tendrá un 1 siempre que el número de entradas a 1 sea impar.
Lógica negada
Puerta NO (NOT)
La puerta lógica NO (NOT en inglés) realiza la función booleana de inversión o negación de una variable lógica. Una variable lógica A a la cual se le aplica la negación se pronuncia como "no A" o "A negada".
Su tabla de verdad es la siguiente:
Tabla de verdad puerta NOT
Entrada Salida
0 1
1 0
Se puede definir como una puerta que proporciona el estado inverso del que esté en su entrada.
Puerta NO-Y (NAND)
La puerta lógica NO-Y, más conocida por su nombre en inglés NAND, realiza la operación de producto lógico negado. En ocasiones es llamada también barra de Sheffer1 . En la figura de la derecha pueden observarse sus símbolos en electrónica. Su tabla de verdad es la siguiente:
Entrada Entrada Salida
0 0 1
0 1 1
1 0 1
1 1 0
Podemos definir la puerta NO-Y como aquella que proporciona a su salida un 0 lógico únicamente cuando todas sus entradas están a 1.
Puerta NO-O (NOR)
La puerta lógica NO-O, más conocida por su nombre en inglés NOR, realiza la operación de suma lógica negada. En ocasiones es llamada también barra de Pierce2 . En la figura de la derecha pueden observarse sus símbolos en electrónica.
Su tabla de verdad es la siguiente:
Tabla de verdad puerta NOR
Entrada Entrada Salida
0 0 1
0 1 0
1 0 0
1 1 0
Podemos definir la puerta NO-O como aquella que proporciona a su salida un 1 lógico sólo cuando todas sus entradas están a 0. La puerta lógica NOR constituye un conjunto completo de operadores.
Circuitos Integrados
Definición
El Microchip, o también llamado circuito integrado (CI), es una pastilla o chip muy delgado en el que se encuentran una cantidad enorme de dispositivos microelectrónicos interactuados, principalmente diodos y transistores, además de componentes pasivos como resistencias o condensadores.
Tipos
CIRCUITO MONOLÍTICO
La palabra monolítico viene del griego y significa "una piedra". La palabra es apropiada porque los componentes son parte de un chip. El Circuito monolítico es el tipo más común de circuito integrado. Ya que desde su intervención los fabricantes han estado produciendo los circuitos integrados monolíticos para llevar a cabo todo tipo de funciones. Los tipos comercialmente disponibles se pueden utilizar como amplificadores, reguladores de voltaje, conmutadores, receptores de AM, circuito de televisión y circuitos de computadoras. Pero tienen limitantes de potencia. Ya que la mayoría de ellos son del tamaño de un transistor discreto de señal pequeña, generalmente tiene un índice de máxima potencia menor que 1 W. Están fabricados en un solo monocristal, habitualmente de silicio, pero también existen en germanio, arseniuro de galio, silicio-germanio, etc.
CIRCUITO HÍBRIDO DE CAPA FINA
Son muy similares a los circuitos monolíticos, pero, además, contienen componentes difíciles de fabricar con tecnología monolítica. Muchos conversores A/D y conversores D/A se fabricaron en tecnología híbrida hasta que progresos en la tecnología permitieron fabricar resistencias precisas.
CIRCUITO HÍBRIDO DE CAPA GRUESA
Se apartan bastante de los circuitos monolíticos. De hecho suelen contener circuitos monolíticos sin cápsula (dices), transistores, diodos, etc, sobre un sustrato dieléctrico, interconectados con pistas conductoras. Las resistencias se depositan porserigrafía y se ajustan haciéndoles cortes con láser. Todo ello se encapsula, tanto en cápsulas plásticas como metálicas, dependiendo de la disipación de potencia que necesiten. En muchos casos, la cápsula no está "moldeada", sino que simplemente consiste en una resina epoxi que protege el circuito. En el mercado se encuentran circuitos híbridos para módulos de RF, fuentes de alimentación, circuitos de encendido para automóvil, etc.
Dispositivos TTL
Definición
TTL es la sigla en inglés de transistor-transistor logic, es decir, «lógica transistor a transistor». Es una familia lógica o lo que es lo mismo, una tecnología de construcción de circuitos electrónicos digitales. En los componentes fabricados con tecnología TTL los elementos de entrada y salida del dispositivo son transistores bipolares.
Características
Su tensión de alimentación característica se halla comprendida entre los 4,75V y los 5,25V (como se ve, un rango muy estrecho). Normalmente TTL trabaja con 5V.
Los niveles lógicos vienen definidos por el rango de tensión comprendida entre 0,0V y 0,8V para el estado L (bajo) y los 2,4V y Vcc para el estado H (alto).
La velocidad de transmisión entre los estados lógicos es su mejor base, si bien esta característica le hace aumentar su consumo siendo su mayor enemigo. Motivo por
...