ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Circuitos Integrados Lineales

jeanpaul31329 de Septiembre de 2014

7.928 Palabras (32 Páginas)642 Visitas

Página 1 de 32

INTRODUCCION

Los circuitos integrados lineales se utilizan con frecuencia para medir y amplificar. Se utilizan en cientos de diferentes tipos de instrumentos electrónicos tales como medidores de cantidad de ohmios, voltímetros y generadores de frecuencia. En tu automóvil, este tipo de circuito se usa para medir la velocidad del motor, el nivel de aceite y la temperatura del agua. Los tipos de circuitos lineales utilizados en proyectos electrónicos incluyen amplificadores operacionales, temporizadores y generadores de forma de onda, los cuales producen ondas eléctricas conocidas como ondas senoidales, cuadradas y triangulares

Los diferentes modelos de los circuitos integrados son numerosísimos y, por ello, resulta algo complicado saber exactamente cuál de todos los que existen se acoplará mejor a nuestro diseño. Existen muchos catálogos de diferentes fabricantes, en los cuales suelen estar especificadas las aplicaciones de cada circuito integrado. Pero uno de los factores más importantes, que raramente viene reflejado en estos catálogos, es el tipo y cantidad de dispositivos externos que vamos a necesitar para realizar la función que deseemos con el circuito integrado. A pesar de todo ello, con un poco de experiencia en manejar estos catálogos seremos capaces de conseguir encontrar el circuito integrado que nos va a resultar más útil, bien para realizar la aplicación concreta que necesitemos o bien para facilitarla, realizando parte de las funciones que deseemos.

Como ya sabemos, el número de tipos diferentes de circuitos integrados es inmenso y resulta muy difícil conocerlos todos. Vamos a intentar conocer un poco más a fondo algunos de ellos. Al haber tantos tipos de circuitos integrados las clasificaciones que se pueden hacer de ellos también son numerosas. Una de estas clasificaciones divide a los c.i. en tres tipos: analógicos o lineales, digitales y c.i. de gran consumo (radio, TV, etc.). Los circuitos integrados lineales son aquellos que admiten para la entrada un rango de señales dentro del cual se pueden tomar infinitos valores válidos, al igual que sucede en la salida. Los circuitos integrados digitales, como veremos más adelante, sólo admiten un conjunto finito de valores de entrada, siendo normalmente "dos" los elementos de dicho conjunto. Los circuitos lineales tienen que cumplir bastantes condiciones, a veces es necesario diseñar uno de estos circuitos sabiendo de antemano la función que va a desempeñar; aunque este tipo de fabricación resulta muy cara y, como ya vimos, al hacer muchos circuitos en serie el precio se abarata mucho. Por esta razón, normalmente se fabrican circuitos integrados muy versátiles de forma que un solo c.i. pueda ser empleado para realizar diferentes tipos de funciones

5.1 TEMPORIZADOR

El 555 es un circuito integrado cuya función principal es producir pulsos de temporización con precisión, entre sus funciones secundarias están la de oscilador, divisor de frecuencia, modulador o generador.

Este circuito integrado incorpora dentro de si, dos comparadores de voltaje, un flip flop, una etapa de salida de corriente, un divisor de voltaje por resistor y un transistor de descarga. Dependiendo de como se interconecten estas funciones utilizando componentes externos es posible conseguir que dicho circuito realiza un gran numero de funciones tales como la del multivibrador astable y la del circuito monoestable.

El 555 tiene diversas aplicaciones, como: Control de sistemas secuenciales, divisor de frecuencias, modulación por ancho de pulso, generación de tiempos de retraso, repetición de pulsos, etc.

Fig. 1- terminales del 555

FUNCIONAMIENTO

Pin 1- Tierra o masa: ( Ground ) Conexión a tierra del circuito (a polo negativo de la alimentación).

Pin 2- Disparo: ( Trigger ) En este pin es donde se establece el inicio del tiempo de retardo, si el 555 es configurado como monoestable. Este proceso de disparo ocurre cuando este pin va por debajo del nivel de 1/3 del voltaje de alimentación. Este pulso debe ser de corta duración, pues si se mantiene bajo por mucho tiempo la salida se quedará en alto hasta que la entrada de disparo pase a alto otra vez.

Pin 3- Salida: ( Output ) Aquí estará el resultado de la operación del temporizador, ya sea que este funcionando como monoestable, estable u otro. Cuando la salida es alta, el voltaje será igual a Vcc menos 1.7 Voltios. Esta salida se puede poner a 0 voltios con la ayuda del pin 4 (reset).

Pin 4- Reset: Si este pin se le aplica un voltaje por debajo de 0.7 voltios, entonces la patilla de salida 3 se pone a nivel bajo. Si esta patilla no se utiliza hay que conectarla a Vcc para evitar que el 555 se resetee.

Pin 5- Control de voltaje: ( Control ) El voltaje aplicado a la patilla # 5 puede variar entre un 40 y un 90% de Vcc en la configuración monoestable. Cuando se utiliza la configuración estable, el voltaje puede variar desde 1.7 voltios hasta Vcc. Modificando el voltaje en esta patilla en la configuración estable causará que la frecuencia del estable sea modulada en frecuencia (FM). Si este pin no se utiliza, se recomienda ponerle un condensador de 0.01uF para evitar las interferencias.

Pin 6- Umbral: Es una entrada a un comparador interno que tiene el 555 y se utiliza para poner la salida (Pin 3) a nivel bajo.

Pin 7- Descarga: Utilizado para descargar el condensador externo utilizado por el temporizador para su funcionamiento.

Pin 8- Vcc: Este es el pin donde se conecta el voltaje positivo de la alimentación que puede ir desde 4.5 voltios hasta 16 voltios (máximo). En las versiones militares de este integrado puede llegar hasta los 18 Voltios.

CIRCUITO ESTABLE BASICO

Si se usa en este modo el circuito su principal característica es una forma de onda rectangular a la salida, en la cual el ancho de la onda puede ser manejado con los valores de ciertos elementos en el diseño.

Para esto debemos aplicar las siguientes formulas:

TA = 0.693 * (R1+R2) * C1

TB = 0.693 * (R2*C1)

Donde TA es el tiempo del nivel alto de la señal y TB es el tiempo del nivel bajo de la señal. Estos tiempos dependen de los valores de R1 y R2. La frecuencia con que la señal de salida oscila esta dada por la formula:

f=1/(0.693×C1×(R1+2R2))

fig.2- circuito de temporizador estable

fig.3- salida oscilador estable

CIRCUITO MONOESTABLE

En este caso el timmer 555 en su modo monoestable funcionará como un circuito de un tiro. Dentro del 555 hay un transistor que mantiene a C1 descargado inicialmente. Cuando un pulso negativo de disparo se aplica a terminal 2, el flip-flop interno se setea, lo que quita el corto de C1 y esto causa una salida alta (un high) en el terminal 3 (el terminal de salida).

La salida a través de capacitor aumenta exponencialemnte con la constante del tiempo:

T=R1 x C1

Cuando el voltaje a través de C1 iguala dos tercios de Vcc el comparador interno del 555 se resetea el flip-flop, que entonces descarga el capacitor C1 rápidamente y lleva al terminal de salida a su estado bajo (low). El circuito e activado con un impulso de entrada que va en dirección negativa cuando el nivel llega a un tercio de Vcc. Una vez disparado, el circuito permanece en ese estado hasta que pasa el tiempo de seteo, aun si se vuelve a disparar el circuito

La duración del estado alto es dada por la ecuación:

T=1.1 (R1 x C1)

El intervalo es independiente del voltaje de Vcc. Cuando el terminal reset no se usa, debe atarse alto para evitar disparos espontáneos o falsos.

fig. 4- configuración monoestable

fig.5- salida monoestable

5.2- amplificadores de audiofrecuencia

La tarea de un amplificador de audio es tomar una pequeña señal y hacerla más grande, sin añadirle ningún tipo de cambio. Esta es una tarea exigente, ya que un sonido musical generalmente contiene varias frecuencias, todas los cuales deben ser amplificadas por el mismo factor para evitar cambiar la forma de la onda y por lo tanto la calidad del sonido. Un amplificador que multiplica las amplitudes de todas las frecuencias por el mismo factor, se dice que es lineal. Las desviaciones de linealidad conducen a diversos tipos de distorsiones.

Los detalles sobre el funcionamiento de los amplificadores están enmarcados en el campo de la electrónica, pero para los propósitos de audio por lo general, se puede decir que los actuales amplificadores de audio comerciales son tan buenos que rara vez el funcionamiento normal de un amplificador, limita la fidelidad de un sistema de reproducción de sonido. Debe asegurarse de que el amplificador puede proporcionar suficiente potencia para alimentar los altavoces existentes, por lo demás, los amplificadores son normalmente uno de los elementos mas fiables de un sistema de sonido.

fig.6- ejemplo de amplificador

DISTORCION DEL AMPLIFICADOR

Para evitar la distorsión, las amplitudes de todas las frecuencias dentro del rango de funcionamiento del amplificador, deben ser amplificadas por el mismo factor. Un amplificador que satisface este requisito se dice que es perfectamente lineal. Si los picos de la forma de onda se recortan, esto da lugar a lo que se denomina distorsión armónica. Otro tipo de distorsión es la distorsión de intermodulación, que ocurre cuando diferentes frecuencias en la mezcla de señales producen frecuencias suma y diferencia, que no existían en la señal original. La distorsión transitoria

...

Descargar como (para miembros actualizados) txt (49 Kb)
Leer 31 páginas más »
Disponible sólo en Clubensayos.com