ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Estimación

giselagonz12 de Marzo de 2015

3.787 Palabras (16 Páginas)154 Visitas

Página 1 de 16

Estimación

se llama estimación al conjunto de técnicas que permiten dar un valor aproximado de un parametro de una población a partir de los datos proporcionados por una muestra. Por ejemplo, una estimación de la media de una determinada característica de una población de tamaño N podría ser la media de esa misma característica para una muestra de tamaño

La estimación se divide en tres grandes bloques, cada uno de los cuales tiene distintos métodos que se usan en función de las características y propósitos del estudio:

Estimación puntual:

Método de los momentos;

Método de la máxima verosimilitud;

Método de los mínimos cuadrados;

Estimación por intervalos.

Estimación bayesiana.

Estimación.

Un estimador es una regla que establece cómo calcular una estimación basada en las mediciones contenida en una muestra estadística

Estimación puntual.

Consiste en la estimación del valor del parámetro mediante un sólo valor, obtenido de una fórmula determinada. Por ejemplo, si se pretende estimar la talla media de un determinado grupo de individuos, puede extraerse una muestra y ofrecer como estimación puntual la talla media de los individuos. Lo más importante de un estimador, es que sea un estimador eficiente. Es decir, que sea insesgado(ausencia de sesgos) y estable en el muestreo o eficiente (varianza mínima) Estimación puntual. Sea X una variable poblacional con distribución Fθ , siendo θ desconocido. El problema de estimación puntual consiste en, seleccionada una muestra X1, ..., Xn, encontrar el estadístico T(X1, ..., Xc) que mejor estime el parámetro θ. Una vez observada o realizada la muestra, con valores x1, ..., xn, se obtiene la estimación puntual de θ, T(x1, ..., xn) = ˆ θ .

Vemos a continuación dos métodos para obtener la estimación puntual de un parámetro: método de los momentos y método de máxima verosimilitud. Método de los momentos: consiste en igualar momentos poblacionales a momentos muestrales. Deberemos tener tantas igualdades como parámetros a estimar. Momento poblacional de orden r αr = E(Xr) Momento muestral de orden r ar = Xn i=1 Xr i n

Método de máxima verosimilitud: consiste en tomar como valor del parámetro aquel que maximice la probabilidad de que ocurra la muestra observada. Si X1, ..., Xn es una muestra seleccionada de una población con distribución Fθ o densidad fθ(x), la probabilidad de que ocurra una realización x1, ..., xn viene dada por: Lθ(x1, ..., xn) = Yn i=1 fθ(xi)

A Lθ(x1, ..., xn) se lellama función de verosimilitud.(credibilidad de la muestra observada). Buscamos entonces el valor de θ que maximice la función de verosimilitud, y al valor obtenido se le llama estimación por máxima verosimilitud de θ. Nota: si la variable X es discreta, en lugar de fθ(xi ) consideramos la función masa de probabilidad pθ(xi).

Ejemplo 7.1: Sea X → N(µ, σ), con µ desconocido. Seleccionada una m.a.s. X1, ..., Xn, con realización x1, ..., xn, estimamos el parámetro µ por ambos métodos. Según el método de los momentos: E(X) = Xn i=1 Xi n = − X, y al ser µ = E(X) se obtiene que ˆ µ = − x. Por el método de máxima verosimilitud: Lµ(x1, ..., xn) = Yn i=1 fµ(xi ) = = Yn i=1 1 √ 2πσ e −(xi−µ) 2 2σ

Estimación por Intervalos de confianza 109 y maximizamos en µ tal función; en este caso resulta más fácil maximizar su logaritmo: lnLµ(x1, ..., xn) = − 1 2σ 2 Xn i=1 (xi − µ) 2 − n ln( √ 2πσ) ∂ ∂µ lnLµ(x1, ..., xn) = 1 σ 2 Xn i=1 (xi − µ) = n − x − nµ σ 2 = 0 ⇐⇒ ˆ µ = −

Estimación por intervalos.

Consiste en la obtención de un intervalo dentro del cual estará el valor del parámetro estimado con una cierta probabilidad. En la estimación por intervalos se usan los siguientes conceptos:

Intervalo de confianza

El intervalo de confianza es una expresión del tipo [θ1, θ2] ó θ1 ≤ θ ≤ θ2, donde θ es el parámetro a estimar. Este intervalo contiene al parámetro estimado con un determinado nivel de confianza. Pero a veces puede cambiar este intervalo cuando la muestra no garantiza un axioma o un equivalente circunstancial.

Variabilidad del parámetro

Si no se conoce, puede obtenerse una aproximación en los datos aportados por la literatura científica o en un estudio piloto. También hay métodos para calcular el tamaño de la muestra que prescinden de este aspecto. Habitualmente se usa como medida de esta variabilidad la desviación típica poblacional y se denota σ.

Error de la estimación

Es una medida de su precisión que se corresponde con la amplitud del intervalo de confianza. Cuanta más precisión se desee en la estimación de un parámetro, más estrecho deberá ser el intervalo de confianza y, si se quiere mantener o disminuir el error, más observaciones deberán incluirse en la muestra estudiada. En caso de no incluir nuevas observaciones para la muestra, más error se comete al aumentar la precisión. Se suele llamar E, según la fórmula E = (θ2 – θ1)/2.

Limite de confianza

Es la probabilidad de que el verdadero valor del parámetro estimado en la población se sitúe en el intervalo de confianza obtenido. El nivel de confianza se denota por (1-α), aunque habitualmente suele expresarse con un porcentaje ((1-α)·100%). Es habitual tomar como nivel de confianza un 95% o un 99%, que se corresponden con valores α de 0,05 y 0,01 respectivamente.

Valor a

También llamado nivel de significación. Es la probabilidad (en tanto por uno) de fallar en nuestra estimación, esto es, la diferencia entre la certeza (1) y el nivel de confianza (1-α). Por ejemplo, en una estimación con un nivel de confianza del 95%, el valor α es (100-95)/100 = 0,05

Valor crítico

Se presenta por Zα/2. Es el valor de la abscisa en una determinada distribución que deja a su derecha un área igual a a/2, siendo 1-α el nivel de confianza. Normalmente los valores críticos están tabulados o pueden calcularse en función de la distribución de la población. Por ejemplo, para una distribución normal, de media 0 y desviación típica 1, el valor crítico para α = 0,1 se calcularía del siguiente modo: se busca en la tabla de distribución ese valor (o el más aproximado), bajo la columna "Área"; se observa que se corresponde con -1,28. Entonces Zα/2 = 1,64. Si la media o desviación típica de la distribución normal no coinciden con las de la tabla, se puede realizar el cambio de variable t =(X-μ)/σ para su cálculo.

Con estas definiciones, si tras la extracción de una muestra se dice que "3 es una estimación de la media con un margen de error de 0,6 y un nivel de confianza del 99%", podemos interpretar que el verdadero valor de la media se encuentra entre 2,7 y 3,3, con una probabilidad del 99%. Los valores 2,7 y 3,3 se obtienen restando y sumando, respectivamente, la mitad del error, para obtener el intervalo de confianza según las definiciones dadas.

Para un tamaño fijo de la muestra, los conceptos de error y nivel de confianza van relacionados. Si admitimos un error mayor, esto es, aumentamos el tamaño del intervalo de confianza, tenemos también una mayor probabilidad de éxito en nuestra estimación, es decir, un mayor nivel de confianza.

Otro uso del termino.

El término estimación también se utiliza en ciencia aplicadas para hacer referencia a un cálculo aproximado, que normalmente se apoya en la herramienta estadística aunque puede no hacerlo. En este sentido, un ejemplo clásico son los poco conocidos pero útiles en economía problema Fermi.

Estimación de parámetro

La teoría de muestreo puede emplearse para obtener información acerca de muestras obtenidas aledatoriamente de una población conocida. Sin embargo, desde un punto de vista practico, suele ser mas importante y ser capaz de inferir información acerca de una población a partir de muestras de ellas. Dichos problemas son tratados por la inferencia estadística que utiliza principios de muestreo. Un problema importante de la inferencia estadística es la estimación de parámetros poblacionales o simplemente parámetros ( como la media y la varianza poblacionales ), a partir de los estadísticos muéstrales correspondientes o estadísticos ( como la media y la varianza muestral.

Estimados sin Sesgo

Si la media de la distribución muestral de un estadístico es igual al parámetro poblacional correspondiente, el estadístico se denomina estimador sin sesgo del parámetro; de otra manera, es denominado estimador sesgado. Los valores correspondientes de dichos estadísticos se llaman estimados sin sesgo o sesgados, respectivamente.

1.- La media de la distribución muestral de las medias es x , la media poblacional. Por lo tanto, la media muestral x es un estimado sin sesgo de la media poblacional .

2.- La media de la distribución muestral de las varianzas es :

s2= (N- 1/N) 2

donde 2 es la varianza poblacional y N es el tamaño de la muestra. Entonces, la varianza muestral s2 es un estimado sesgado de la varianza poblacional 2. Usando la varianza modificada.

2=(N/N-1)s2

Se encuentra que 2 = 2 , de modo que 2 es un estimado sin sesgo de 2 .Sin embargo es un estimado de .En términos de esperanza matemática se podía decir que un estadístico no esta sesgado si su esperanza es igual al parámetro poblacional correspondiente. Por lo tanto, x y 2 no están sesgados , porque E

Estimado eficiente

Si las distribuciones muéstrales de dos estadísticos tienen la misma media o

...

Descargar como (para miembros actualizados) txt (22 Kb)
Leer 15 páginas más »
Disponible sólo en Clubensayos.com