ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Microscopio


Enviado por   •  17 de Febrero de 2015  •  4.237 Palabras (17 Páginas)  •  224 Visitas

Página 1 de 17

Equipos:

Microscopio

La palabra microscopio, proviene del prefijo micro que significa pequeño y del sufijo skope, que quiere decir, examinar o ver. Los microscopios son instrumentos ópticos o electrónicos con un elevado poder resolutivo, que posibilita la observación de los microorganismos, células y otras estructuras microscópicas, al proporcionar una imagen aumentada virtualmente del tamaño real a total magnitud que posibilitan su observación a través de su empleo.

DIFERENTES TIPOS

Se fabrican dos tipos de microscopios: el óptico y el electrónico. De cada tipo se comercializan diferentes modelos y aditamentos especiales para proporcionar determinados efectos, aunque todos tienen respectivamente el mismo principio. Microscopio óptico Concepto: Son instrumentos de laboratorio, diseñados básicamente con una sola lente o mediante un sistema de lentes de aumentos, que son ubicados alineadamente en el eje óptico del microscopio para que proporcionen una imagen virtual ampliada de los objetos microscópicos examinados, lo que hace posible su observación, siempre que se utilice una adecuada iluminación. Clasificación Los microscopios ópticos se clasifican en: simples y compuestos.

• Microscopios simples

Están formados por una sola lente convergente, que proporciona una imagen virtual, no invertida, varias veces mayor que el tamaño real del objeto observado. Debido a su limitada capacidad de ampliación, no se puede observar con ellos objetos microscópicos, quedando restringido su empleo para el examen de diversas estructuras u organismos microscópicos muy pequeños, cuyos detalles escapan a la agudeza visual del ojo humano, como por ejemplo: colonias muy pequeñas, desarrolladas en los cultivos, vermes de poca longitud, como el Necator americanus o el Enterovirus vermicularis, etc. Entre los dispositivos utilizados se encuentran las lupas empleadas en las prácticas de disección.

Para su manejo, se debe colocar la lente de manera que su cara plana o menos curva, quede hacia el objeto a examinar y observando por la cara opuesta, aproximar el instrumento gradualmente, hasta una distancia focal menor que la empleada si se fuera a observar directamente.

Lupa

• Microscopio compuesto

A diferencia de los microscopios simples, los compuestos funcionan mediante la combinación de varias lentes, que conjuntamente con una fuente de iluminación, forman parte de un sistema óptico, que tiene como soporte a un sistema mecánico, provisto de diversas piezas y aditamentos que deben ser manipulados para lograr y mantener el enfoque de la preparación, recorrerla y observar la cantidad de campos microscópicos que sean pertinentes.

- Sistema mecánico

El sistema mecánico consta de las siguientes partes:

1. Base o pie: Es la parte del microscopio que queda en contacto con la superficie de la mesa de trabajo. Su fondo plano y acentuado peso le proporcionan estabilidad al microscopio y constituyen a aminorar los efectos de las vibraciones que causan distorsiones durante la observación. La base es el sostén donde se asientan todas las restantes partes del microscopio. Algunos modelos están provistos de una charnela (pasador) que permite la inclinación hacia el observador de la parte superior del microscopio.

2. Brazo: Es una columna sólida y rectangular que se haya articulada por su extremo inferior a la base. En su trayectoria hacia la parte superior, algunos modelos forman una curvatura, mientras que en otros su trayectoria es recta hasta más allá de la mitad de su longitud en que se dobla en dirección frontal, formando una inclinación oblicua o un ángulo recto de 900.

En su parte superior, el brazo está articulado al tubo óptico o al cuerpo binocular, mientras que la porción media de su cara frontal sirve de asiento al extremo posterior de la platina.

3. Tubo óptico: En los microscopios monoculares, consiste en un tubo cilíndrico de 2,3 cm de diámetro, con una longitud de varios cm que varía según el modelo, encontrándose rodeado por un tubo de mayor diámetro, denunciado fusil que articula a la parte superior del brazo. El orificio superior se emplea para insertar la lente ocular, mientras que en el inferior se encuentra acoplado al revolver porta objetivos.

En los microscopios binoculares, el extremo superior del tubo óptico no termina recto, sino que forma un cuerpo binocular, que consiste en una cajuela rectangular ubicada en posición horizontal que puede estar ligeramente inclinada hacia el observador. En la superficie frontal presenta 2 tubos cortos de 2,3 cm de diámetro donde se insertan los dos lentes oculares. En algunos modelos, uno de los tubos, al menos, es giratorio al ser accionado se desplaza hacia arriba o hacia abajo, lo cual permite sincronizar la distancia de ambos lentes a las diferencias de potencialidad de cada ojo. Este cuerpo binocular, tiene ubicado en el punto de contacto con el tubo óptico un prisma o espejo que refracta la imagen por igual hacia ambas lentes, disponiendo además, por la misma cara donde se hayan los tubos para insertar los lentes oculares, un mecanismo de desplazamiento, consistente en dos tapas de corredera, que se accionan lateralmente para ampliar o reducir la distancia entre ambos lentes, hasta hacerlos coincidir con la de los ojos del, observador, lo cual se logra cuando éste deje de ver dos campos microscópicos separados o superpuestos y vea uno solo.

4. Revolver porta objetivos: El revolver porta objetivos es un disco plástico o metálico de unos 7 cm de diámetro que se encuentra atornillado por su eje a una pieza que rodea al tubo óptico denominado fusil, estando provisto de una tapa metálica giratoria de superficie cónica, provista de 3 ó 4 orificios de 2 cm de diámetro con rosca interna, ubicados equitativamente alrededor de su entorno a menos de un cm de su borde. En cada uno de estos orificios se enroscará un lente objetivo, cuya secuencia aproximada será de menor o mayor potencia de aumentos.

Cuando se requiera un mayor o menor aumento se hará girar, manualmente el revolver hacia la derecha o hacia la izquierda hasta ubicar el lente deseado sobre el orificio de la platina, quedando la parte posterior del lente frente al tubo ocular. El disco fijo tiene en su extremo frontal una pequeña hendidura y el giratorio presenta un pequeño saliente frente al orificio donde se enrosca cada lente objetivo. Al rotar el disco y ubicar el lente deseado sobre el orificio de la platina, coincide con que el saliente se introduce en la hendidura produciendo un ligero sonido audible al acoplarse que indica que la lente está ubicada correctamente.

Revolver portaobjetivos

5. La platina: Es una doble plataforma metálica de color negro o gris de aspecto mate. Generalmente es de forma cuadrada y mide unos 15 cm2 de superficie x 1 a 2 cm de grosor, pudiendo en algunos modelos ser circular. Presenta en su porción central un orificio circular de unos 5 cm de diámetro, por donde pasa la luz procedente de la fuente de iluminación. En algunos modelos el orificio es ovoide.

La platina está provista de pinzas, que se utilizan para sujetar las láminas portaobjetos que contiene la preparación a observar. Estas pinzas, en algunos modelos son fijas, mientras que en otros, se encuentran articuladas a un sistema de rodamiento formado por dos cremalleras y dos tornillos, engranados respectivamente a cada una de ellas. Mediante movimientos de rotación que se imprimen a uno de los tornillos se propicia el desplazamiento de la pinza hacia uno u otro lateral y con el accionar del otro se desplaza la plataforma superior de la platina hacia delante o hacia atrás.

La mayoría de los microscopios que se emplean en la actualidad, tienen grabada sobre el borde frontal de la platina una escala graduada de 0 a 80 mm, junto con un nonio, y en el borde lateral derecho otra con el rango de 80 a 110 mm provista igualmente de un nonio. Estas escalas permiten al microscopista ubicar la posición de un campo microscópico que desea posteriormente volver a ver, para lo cual anotará las coordenadas que le proporcionan ambas escalas, lo que facilitará la localización del campo con rapidez sin tener que rastrear toda la preparación.

Diferentes formas de platinas y pinzas

6. Tornillos: Además de los tornillos de la platina, los microscopios están provistos de otros 3 tornillos; el macrométrico, el micrométrico y el del elevador del condensador.

Es la parte superior del brazo, algunos microscopios presentan dos orificios, uno debajo del otro, que lo atraviesan de lado a lado. En el que está ubicado en la parte superior se inserta el tornillo macrométrico (uno por cada lado) y en el orificio inferior, de similar manera el tornillo micrométrico.

Estructuralmente ambos tornillos son iguales, con la única diferencia de que el tornillo micrométrico es más pequeño.

Cuando los tornillos son introducidos en sus orificios respectivos solo quedan externamente sus cabezas, las cuales son de forma circular con un tamaño de varios cm de diámetro por 1 ó más de ancho, con el borde estriado transversalmente para facilitar el agarre manual al imprimirle movimientos de rotación. El vástago helicoidal de cada tornillo que penetra en el orificio termina en un pequeño piñón (rueda dentada) que se engrana a la cremallera del tubo óptico, lo que propicia al accionar el tornillo, transformar el movimiento rotatorio del piñón en movimiento rectilíneo del tubo óptico en dirección ascendente o descendente para hallar la distancia focal.

El piñón del tornillo macrométrico tiene separado los dientes a la misma distancia que los de la cremallera, lo que propicia imprimirle movimientos rápidos de desplazamiento al tubo óptico con lo que se consigue con prontitud el enfoque grosero de la preparación.

En cambio el piñón del tornillo micrométrico tiene los dientes más unidos, lo que no le permite engranarse directamente a la cremallera, sino a través de un piñón similar al del tornillo macrométrico que tiene acoplado un uno de sus laterales a otro más pequeño con los dientes a igual distancia que los del tornillo micrométrico. Esta diferencia mecánica propicia un desplazamiento muy lento del tubo óptico, con el que se logra la nitidez del enfoque.

En otros modelos de microscopios el tubo óptico es fijo y la distancia focal se consigue, mediante el desplazamiento ascendente o descendente de la platina, por un mecanismo similar, mediante los tornillos macrométricos y micrométricos, mientras que en otros, ambos tornillos están acoplados, quedando el micrométrico insertado en el centro del macrométrico.

El funcionamiento para subir o bajar el condensador tiene el mismo mecanismo que el empleado para los tornillos macrométricos. Este tornillo queda muy próximo al condensador y se acciona en uno u otro sentido según sean los requerimientos de iluminación de acuerdo al tipo de microscopía que se vaya a realizar.

- Sistema óptico.

El sistema óptico está formado por las diferentes partes provistas de lentes y de las que intervienen en la iluminación, siendo las siguientes:

1. Lentes oculares: Antiguamente los lentes oculares disponían de una sola lente, pero desde hace años se viene utilizando un sistema de 2 lentes colocados en el interior de un pequeño tubito cilíndrico de 2,2 cm de diámetro x 3 ó más cm de largo, que le sirven de soporte, quedando separados entre sí, por un diafragma anular en forma de arandela, que se haya insertado en la porción media del tubo. La lente ubicada en el extremo superior mide 1,7 cm de diámetro, es plano-convexa, teniendo el lado plano dirigido hacia el interior del tubo. La segunda lente es biconvexa, mide 2,1 cm de diámetro y está ubicada en el extremo posterior del tubito, el cual dispone de una tapa de rosca de color negro provista de un criterio central de 1,9 cm, que al ser enroscada suavemente la lente inmovilizándola, pudiendo ser observada a través del orificio.

En algunos modelos esta lente se encuentra empotrada en la misma tapa. La tapa tiene grabado en su superficie un número seguido de una "x", que indica su poder de ampliación.

Los lentes oculares que se utilizan con mayor frecuencia, son los que proporcionan los siguientes aumentos: 6x, 8x, 10x, 12,5x y 15x. Este pequeño tubo, portador de las lentes, está calibrado para que pueda ser insertado en el interior del tubo óptico, quedando retenido en su descenso por el borde de la tapa que tiene un mayor diámetro.

Los microscopios monoculares están diseñados para trabajar con un solo lente ocular y los binoculares con dos.

La función de los lentes oculares es la de ampliar virtualmente, la imagen formada ampliada por el lente objetivo y corregir las aberraciones cromáticas y de esferidad debidas a la curvatura de la lente, mediante la combinación de varias lentes con distintos radios de curvatura o suprimiendo por medio del diafragma anular los rayos que atraviesan la porción periférica de la lente.

Lentes oculares

2. Lentes objetivos: Constituyen la parte más importante del sistema óptico del microscopio, ya que mediante su poder de resolución es posible observar separados dos objetos microscópicos muy próximos entre sí. Al igual que los lentes oculares, los lentes objetivos, están formados por un sistema de varias lentes, colcadas en el interior de un pequeño tubito cilíndrico, que a diferencia del que porta las lentes oculares, está formado por tres piezas desarmables; la primera es un fino tubito que contiene las lentes, provisto de rosca en su extremo posterior, mientras que el extremo frontal o inferior, a pocos mm de su terminación se va estrechando cónicamente, para finalmente terminar plano, como si se hubiera cortado la punta del cono, quedando la abertura del tubo con un diámetro reducido de 1 a 5 mm, por donde se puede observar la cara plana de la lente plano convexa que está en contacto con el pequeño orificio. Esto se debe a que las lentes oculares deben ser pequeñas, ya que entre menor sea su diámetro, mayor será su capacidad de ampliación. La segunda, es la base, una especie de unión universal, de 2,2 cm de diámetro x 2 ó 3 mm de grosor, estriada transversalmente como algunas monedas, teniendo por ambos lados un saliente anular adjunto de menor diámetro de 2 ó 3 mm de longitud, los cuales están diseñados con rosca externa y uno solo de ellos, además, con rosca interna, por donde se enrosca el tubito portador de las lentes. La tercera pieza, es una cánula cilíndrica que se ensambla a la base por la rosca externa del mismo saliente donde se enroscó el tubito portador de las lentes por su rosca interna. Al quedar ensamblado el lente objetivo, la cánula rodeará a todo el tubito menos por extremo cónico. En estas condiciones el lente objetivo podrá ser colocado en uno de los orificios del revolver portaobjetivos, mediante la rosca que se encuentra en el lado opuesto.

Lentes objetivos:

a) objetivos secos; b) objetivos de imersión.

Existen dos tipos de lentes objetivos; los secos y los de inmersión.

Los objetivos secos alcanzan la distancia focal a varios cm por encima de la preparación, quedando un espacio de aire entre la lámina cubreobjetos y la lente. Este tipo de objetivo se fabrica, con diferentes potencias de aumento. El de menor aumento (5x ó 6x) es el más corto de todos y se caracteriza por proporcionar la observación de un área extensa de la preparación, por lo que se le conoce también como lente explorador. Debido a su baja potencia de ampliación no es posible observar con este lente a las bacterias, protozoarios y otro microorganismo de dimensiones microscópicas muy pequeñas. Los lentes objetivos de 10x ó 20x, son más largos, proporcionan un aumento mayor que el explorador, aunque todavía insuficiente para observar con nitidez microorganismos muy pequeños como las bacterias, aunque pueden ser factibles a microscopistas con experiencia para identificar huevos de helmintos y otros elementos de interés de tamaño similar. Este lente se le conoce también como seco débil. El más largo de los tres es el de 40x ó 45x, que abarca un área más reducida de la preparación, pero proporciona un aumento lo suficientemente amplio, como para permitir la observación detallada de algunos microorganismos como protozoarios y hongos, así como: huevos y larvas de helmintos, células, artefactos y otros elementos de interés de tamaño similar, resultando aún insuficiente para la observación pormenorizada de bacterias, particularmente de las cocáceas por su íntimo tamaño. Este lente se conoce también como seco fuerte.

Lente de inmersión se diferencia de los secos, no solo por ser más largo, sino además, por tener, generalmente, una franja de color negro a su alrededor y grabadas en su cánula la sigla HI (Homg Inmersión) u OI(Oil Inmersión), así como su potencia de aumento (90x a 100x) que depende enteramente del grado de ampliación que proporcione la lente frontal, ya que las demás ubicadas dentro del tubito son de corrección.

En el orificio anterior del tubito, se haya la lente frontal, mide escasamente 1 mm de diámetro, de ahí, que para poder captar los rayos luminosos procedentes del condensador, que han atravesado la preparación, que tenga que estar situado a 1 ó 1,5 mm de la misma. Como el espacio de la distancia focal es tan reducido se corre el riesgo de incurrir en la impericia de presionar la preparación con el lente, provocando no solo la ruptura de la lámina, sino además pudiendo ocasionar daños, en ocasiones irreparables a la propia lente. Para evitar estos accidentes, generalmente, el tubito portador de las lentes se diseña de forma retráctil, está estructurado por dos tubitos de diámetro ligeramente diferentes, lo que propicia que el ponga las lentes pueda introducirse calibradamente dentro del otro, disponiendo además de un pequeño resorte que mantiene fija a las dos partes, pero posibilitando que cuando la parte inferior que contiene la lente frontal sea presionada sobre la lámina, se introduzca unos mm dentro de la externo, volviendo a su posición normal cuando cesa la presión, como si fuera un pistón. Los rayos de luz al pasar de un medio a otro con diferente índice de refracción tiende a desviarse por reflexión. Cuando se emplean objetivos de inmersión, a pesar de que la distancia que separa a la lente de la preparación sea escasamente de 1 mm, este fenómeno ocurre. Para evitarlo, se debe colocar sobre la preparación una gota de un líquido cuyo índice de refracción sea más elevado que el del aire y muy próximo al vidrio de la lente, que es de 1.52, en el que quede inmersa la lente. El líquido empleado tradicionalmente ha sido el aceite de cedro, cuyo índice de refracción es de 1.52. Al cubrirse el espacio de aire por el aceite los rayos de luz que han atravesado la preparación asciende perpendicularmente hacia la lente sin refractarse significativamente, lo que sí, ocurre, cuando se utilizan lentes objetivos secos.

El aceite de cedro tiene el inconveniente de oxidarse con el aire, adquiriendo una consistencia muy viscosa, que con el tiempo afecta la calidad de la lente, aunque se limpien adecuadamente después de su uso, por lo que, en la actualidad se emplean otros aceites para microscopios más estables, con las mismas ventajas, pero dañando menos las lentes.

La función de los lentes objetivos es formar la imagen del objeto observado y ampliarla virtualmente de acuerdo a su potencial de aumento.

Aumento total que proporciona el microscopio: Para conocer el número de diámetro en que se amplía virtualmente el objeto observado, se procede a multiplicar el valor de ampliación que está grabado en el lente objetivo, por el valor de ampliación del lente ocular.

3. Condensador: El condensador de campo claro o brillante, está compuesto por 2 lentes convergentes de desigual, tamaño, ubicadas en el interior de un dispositivo cilíndrico de 3 cm de diámetro, que tiene la parte superior ligeramente cónica, con el extremo de su vértice cortado, donde se encuentra un orificio de menos de 1 cm de diámetro, ocupado por la cara plana de la lente más pequeña que es planoconvexa. La segunda lente es biconvexa, siendo de mayor tamaño, encontrándose ubicada por su lado menos curvo a corta distancia de la lente más pequeña.

Condensador luminoso

El condensador se introduce de abajo hacia arriba, dentro de un dispositivo anular, que se haya justamente debajo del orificio de la platina, siendo inmovilizado mediante un fino tornillo, quedando ambas lentes en posición perpendicular con respecto al lente objetivo. Este dispositivo a su vez, está articulado a una pieza angular que lo fija a la parte inferior del brazo, muy próximo a la base, estando provisto de un tornillo engranado a una cremallera, que se utiliza como elevador del condensador al propiciar con su accionar su desplazamiento vertical ascendente o descendente, según sea necesaria una mayor o menor intensidad de luz.

La función del condensador es hacer los rayos luminosos procedentes directamente de la lámpara e indirectamente por reflexión del espejo, se refracten (desvíen) al atravesar las lentes convergentes, formando un cono de luz, en cuyo vértice se intensifica un foco luminoso, por la convergencia de los rayos de luz que al atravesar todo el sistema, salen paralelos al eje principal incidiendo sobre el objeto a observar, para después atravesarlo y seguir su trayectoria perpendicularmente, sino divergen, hacia la lente frontal del objetivo.

Su colocación, muy próxima a la cara posterior del portaobjetos reduce la divergencia de los rayos de luz, con lo que se logra una mayor iluminación que resulta imprescindible cuando se hacen observaciones a grandes aumentos.

4. Diafragma de Iris: Es un accesorio del condensador, consistente en un fino disco metálico, diseñado con múltiples laminillas planas superpuestas consecutivamente que adoptan el aspecto de un abanico plegable, encontrándose acoplado en el extremo del orificio posterior del condensador, debajo de la lente biconvexa, cubriendo todo ese diámetro.

El condensador presenta, muy próximo a su base, una ranura que los bordea horizontalmente, de cuyo interior sale una pequeña palanquita plana, que puede ser desplazada hacia delante o hacia atrás de la ranura. Cuando el movimiento se produce hacia delante, las laminillas del diafragma se despliegan hacia el entorno del cilindro, lo que da lugar, al recogerse, a la formación de un orificio de diámetro variable en el centro del diafragma. Si la palanquita fuera hacia atrás, sucedería todo lo contrario, ya que las laminillas se desplazarían hacia el centro, cerrándose, para reducir progresivamente el diámetro del orificio.

Diafragma;

a) Diafragma iris, b) Diafragma anular.

El diafragma se utiliza para regular la cantidad de rayos luminosos que deben pasar al interior del condensador. Cuando pretendemos realizar una microscopía donde el exceso de iluminación, lejos de beneficiar, afecta la calidad de la observación se cierra total o parcialmente el diafragma y cuando necesitamos más intensidad de luz se va abriendo hasta obtener la requerida.

5. Espejo: El espejo de los microscopios es circular, mide unos 5 cm de diámetro y consta de dos espejos adosados por su reverso, uno de los cuales tiene la superficie plana y el otro cóncava. La primera se utiliza cuando la fuente de luz es natural y la segunda cuando se emplea iluminación artificial. Ambos espejos se encuentran montados conjuntamente dentro de un fino aro metálico de unos 5 mm de ancho que les sirven de marco, teniendo por cada lateral de su línea ecuatorial, un fino orificio de 1 mm de diámetro por donde se articula a dos pequeños salientes puntiformes que se hayan en cada extremo de una planchuela curva acoplada por su centro a un pequeño vástago cilíndrico, dándole un aspecto de horquetilla. El extremo posterior del vástago se introduce en un orificio presente en el extremo inferior del brazo donde se fija. De esta manera el espejo puede ser movido por rotación, mediante las articulaciones laterales, para seleccionar la cara a emplear o conjuntamente, mediante la rotación del vástago, para hallar el ángulo adecuado que propicie la reflexión del espectro luminoso procedente de la lámpara hacia el condensador.

Espejo

6. Lámpara: Las lámparas utilizadas, como parte del módulo del microscopio óptico, deben proporcionar para la microscopía ordinaria, una luz monocromática de corta longitud de onda. En los microscopios modernos, la lámpara está acoplada en la base aunque todavía se utilizan modelos, donde se encuentra separada. En ambos casos la lámpara forma parte de un soporte diseñado para proyectar mediante un p sus emanaciones como un cono de luz, de manera similar a como lo hace una linterna. La mayoría de dichos soportes se fabrican con diversos aditamentos para optimizar el empleo de la iluminación, tales como: porta filtros, diafragma y reóstato, este último para regular la intensidad de la luz.

Lámpara

Cuando la lámpara está separada del microscopio, debe proyectarse el haz de luz de manera que incida directamente sobre el espejo, para que los rayos sean dirigidos por reflexión hacia el condensador.

7. Filtros:Son dispositivos de vidrio, que se caracterizan por ser transparentes, esféricos y planos, miden de 2 a 3 cm de diámetro y tienen un determinado color. Su función es la de absorber las longitudes de ondas de determinados colores para proporcionar una luz que mejore la observación microscópica.

Filtros

...

Descargar como  txt (25.4 Kb)  
Leer 16 páginas más »
txt