Sistema De Distribucio
nickolai30 de Septiembre de 2013
3.821 Palabras (16 Páginas)273 Visitas
Objetivo:
En el siguiente informe se darán a conocer los sistemas implicados en el funcionamiento del sistema de distribución, explicando cómo funcionan los diferentes componentes por separado y en conjunto, además de una pequeña explicación de sistemas de distribución más avanzados como son los sistemas de distribución variable.
Introducción:
El sistema de distribución regula la entrada y salida de los gases en el cilindro, abriendo y cerrando las válvulas de admisión y escape en forma sincronizada con el cigüeñal, en sistemas de distribución variable los mecanismos van a modificar la apertura cierre y traslapo entre válvulas, según lo requiera el motor de acuerdo a las exigencias de carga y numero de revoluciones.
Componentes:
El sistema de distribución se compone por los siguientes elementos
• Árbol de levas
• Taques
• Balancines
• Válvulas
• Resorte de válvulas
• Mandos de la distribución
Árbol de levas:
El árbol de levas o eje de levas es el órgano del motor que controla la apertura y el cierre de las válvulas de admisión y de escape. Está constituido por un eje de acero al carbono forjado y cementado en el que están mecanizadas las levas para la apertura de las válvulas y otras para dar movimiento a otros órganos. El árbol de levas recibe movimiento desde el cigüeñal.
Las levas o excéntricas provocan un movimiento oscilatorio del elemento causante de la apertura de la válvula. El elemento que provoca la apertura de la válvula, cuando está sujeta a un movimiento rectilíneo de traslación, recibe el nombre de Taque.
El perfil de la leva determina el momento de las aperturas de las válvulas, los tiempos de apertura y la elevación de las mismas.
Los perfiles de las levas para las válvulas de admisión suelen ser distintos a los de las levas para el escape. El perfil de la leva se divide en tres partes:
• Un trazo circular que se define como zona de reposo que corresponde al cierre de la válvula (que hace parte del círculo base).
• Un trazo circular de radio más pequeño, llamado cabeza de la leva, que corresponde a la zona de máxima apertura.
• Dos trazos rectilíneos o curvilíneos tangentes a los dos círculos anteriores (base-apertura máxima), llamados flancos de la leva que corresponden respectivamente a la elevación y al descenso de la válvula (apertura-cierre de la válvula).
La zona de reposo está disminuida de un determinado valor para permitir un cierto juego de funcionamiento entre la válvula y el taque, aún cuando se produzca la dilatación de esta zona debido a las temperaturas de funcionamiento.
La elevación y los tiempos de apertura de la válvula definidos por el perfil y la dimensión de la leva.
Teóricamente, se obtiene el máximo resultado si se consigue abrir y cerrar instantáneamente las válvulas y se mantienen en posición de elevación máxima durante todo el período de admisión y escape del motor.
El movimiento de apertura y cierre de las válvulas se realiza empujando el vástago de la válvula con la fuerza suficiente como para vencer la acción del muelle, gracias a los cuales, cuando deja de haber empuje, vuelven otra vez a su posición de cierre.
1 -2 Aceleración positiva.
2 -3 Aceleración negativa.
3 -4 Aceleración positiva.
4 -5 Aceleración negativa.
Taques:
Cuando la leva del árbol actúa sobre el vaso (1) y por consiguiente sobre el émbolo (2), el aceite atrapado en la cámara (6), al cerrarse la válvula de bola (4), transmite el movimiento del émbolo (2) directamente al manguito (3) y por consiguiente a la válvula. En esta fase, debido a la alta presión a la que está sometido, parte del aceite presente en la cámara (6), se filtra a través de una lumbrera mínima existente entre el émbolo (2) y el manguito (3).
En la fase de cierre de la válvula, para que el empujador, debido a la acción del muelle (5), siga el perfil de la leva, se crea una depresión en el interior de la cámara (6) que provoca la apertura de la válvula de bola (4), permitiendo la entrada de aceite. El aceite que entra en la cámara (6) sustituye el que se filtra en la fase anterior de apertura de la válvula.
Por lo visto hasta aquí, se comprende que al accionar la leva o el balancín sobre el empujador, por la propiedad de incomprensibilidad de los líquidos, el aceite actúa de transmisor del movimiento ya que éste no puede fluir hacia el exterior por la acción de la válvula de retención. Las dilataciones térmicas del sistema quedan compensadas mediante las fugas de aceite estrictamente calculadas entre el pistón y el cuerpo del empujador.
Cuando el empujador va montado directamente sobre la cola de la válvula, por el mayor peso de éste respecto a un empujador normal, se limita el número máximo de r.p.m. del motor al tener el empujador hidráulico mayores inercias.
Balancines:
Tienen la misión de transformar el movimiento lineal del empujador o en su caso circular de la leva, en un movimiento oscilatorio con el que acciona directamente la válvula. Están construidos generalmente en acero o aleación de aluminio. En uno de sus extremos normalmente existe un dispositivo que permite la regulación del juego de las válvulas.
El eje de balancines que suele ser hueco y cerrado en sus extremos, lleva una serie de orificios que coinciden con los cojinetes o rodamientos de los balancines, por los que sale el aceite de lubricación.
Válvulas:
Las válvulas de los motores de combustión interna son los órganos que controlan la admisión y el escape de los gases en la cámara de combustión mediante su apertura y cierre. Están dotadas de un movimiento alternativo, abriéndose hacia el interior de la cámara de combustión. La estanqueidad del cierre se ve favorecida por la presión de los gases en la cámara de combustión que inciden en ellas.
Las válvulas de los motores de combustión interna son los órganos que controlan la admisión y el escape de los gases en la cámara de combustión mediante su apertura y cierre. Están dotadas de un movimiento alternativo, abriéndose hacia el interior de la cámara de combustión. La estanqueidad del cierre se ve favorecida por la presión de los gases en la cámara de combustión que inciden en ellas.
La cabeza es solidaria al vástago o cola de la válvula con un amplio radio de unión para reducir el efecto de entalladura y del mismo modo facilitar el flujo de calor hacia el propio vástago. Este último elemento es cilíndrico y sirve para guiar el movimiento y transmitir a la cabeza la carga del muelle de retorno, por medio de los semiconos.
1. Semiconos. 2. Platillo superior. 3. Muelle. 4. Platillo inferior.
Las válvulas durante su funcionamiento están sometidas a unas solicitaciones térmicas muy elevadas, debiendo soportar las temperaturas generadas durante la combustión y una temperatura media de trabajo de unos 700º a 800º C en la válvula de escape y de unos 200º a 300º C en la válvula de admisión. Las válvulas de admisión se fabrican generalmente de acero al cromo-silicio y las del escape de acero al cromo - níquel que es un material más resistente al calor. Los asientos de las válvulas se recubren con estelita que es una aleación de cobalto y cromo, para aumentar su resistencia al desgaste. En los motores de altas prestaciones las válvulas de escape, con el fin de mejorar su refrigeración, se fabrican huecas y se rellenan de sodio.
Gracias a la buena conductibilidad térmica del sodio se consigue que el calor de la cabeza de la válvula se evacue mejor por el vástago, evitando de este modo puntos calientes en la cámara de explosión obteniendo así una reducción de la solicitación térmica.
Las válvulas se refrigeran mucho mejor si su diámetro es reducido (al ser menor la superficie expuesta a los gases de escape en relación a la superficie de contacto con su asiento) y si la longitud de la guía y el diámetro del vástago son mayores (al ser mayor la superficie de transmisión de calor).
Esta es una de las razones por la que las válvulas de escape son de menor diámetro que las de admisión. Por ello es mejor utilizar dos válvulas de escape que una sola de diámetro mayor.
El calor que la válvula recibe de los gases calientes se disipa en un 75% por el asiento y el 25% restante por la guía.
Dos válvulas por cilindros:
Las válvulas se alinean si el árbol de levas está situado en el bloque, si está en la culata, las válvulas pueden alinearse, si la distribución es con un sólo eje o disponerlas en V, si la distribución es con un árbol con balancines, o con dos árboles.
Tres válvulas por cilindro:
Permite un mejor rendimiento volumétrico a altos regímenes de rotación, con un coste intermedio entre las dos y las cuatro válvulas por cilindro. La distribución puede ser con dos árboles o con uno sólo con balancines.
Cuatro válvulas por cilindro:
Es la solución que más se está utilizando en los motores de elevadas prestaciones y de reciente producción. Permite elevados rendimientos volumétricos y elevados regímenes de rotación, pero la potencia a bajos regímenes es peor. Este problema se reduce utilizando
...