ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Anticonceptivos


Enviado por   •  24 de Septiembre de 2014  •  4.587 Palabras (19 Páginas)  •  140 Visitas

Página 1 de 19

IV. LA ESPECIALIZACIÓN CELULAR

EN LOS capítulos anteriores hemos descrito muchas funciones celulares de distintos tipos, pero quizá hemos dejado la impresión de que las células son todas iguales, o al menos muy semejantes. Por un lado, esta es la situación de los organismos unicelulares, o de los casos más sencillos de organización multicelular, como en las esponjas; en estos organismos, millones de células iguales se agrupan para formar un "organismo", que en realidad no es tal, sino una asociación de células iguales. Sin embargo, a medida que los organismos se vuelven más complicados, se va produciendo la distribución del trabajo entre distintos tipos de células, y éstas deben a su vez especializarse para realizar con mayor eficiencia las funciones que les han sido encomendadas dentro del concierto de todo el organismo.

La especialización, independientemente de que puede reconocerse por las manifestaciones fisiológicas, o de comportamiento macroscópico, tiene una representación bioquímica o molecular, que en muchos casos se conoce con cierto detalle. A manera de ejemplos se describen a continuación algunas de las principales propiedades que distinguen en su funcionamiento y en su estructura a algunas células.

LOS ORGANISMOS PROCARIOTES

Después de los virus, que son propiamente seres vivos, sino una especie de agregados moleculares que dependen de distintos tipos de organismos vivos para reproducirse y manifestar ciertas actividades muy limitadas (véase el capítulo I), tenemos a los procariotes, que sí tienen vida propia y cuentan con una gran diversidad de especies y una enorme capacidad funcional. Una bacteria, por ejemplo, puede vivir aislada si se encuentra en condiciones adecuadas para nutrirse y realizar con éxito su reproducción. Una de las características de los procariotes, además de que todas las células de una especie son semejantes, es que representa el mínimo de elementos estructurales y funcionales y con vida independiente, al grado que, por ejemplo, no tienen siquiera un núcleo, sino una especie de agregado molecular en el que se encuentra el DNA habitualmente en un solo cromosoma.

Un procariote, para transformar su energía, dispone de su propia membrana externa, y no de la mitocondria ni del cloroplasto, que en las células eucariotes son las estructuras especializadas para la fosforilación oxidativa o la fotosíntesis.

Los procariotes, sin embargo, a pesar de que no tienen una estructura complicada a simple vista, tienen una diversidad de funciones que difícilmente podemos imaginar "contenida" en tan pequeñas dimensiones. Una bacteria o un bacilo son verdaderas obras de arte y maravillas de acomodo de miles de moléculas que interactúan de forma ordenada para producir también miles de cambios en cada instante.

Es tal la complejidad del funcionamiento de los procariotes, que admira, por ejemplo, la capacidad que algunos microorganismos han tenido para atacar al hombre. A pesar del desarrollo de la ciencia y la medicina, aún tenemos enfermedades infecciosas de animales, plantas y humanos que están muy lejos de poderse controlar.

LOS EUCARIOTES

Los eucariotes, por el contrario, son células mucho más organizadas; se piensa que provinieron de la evolución de los procariotes. Su característica principal es que cuentan con una estructura celular bien definida; de hecho, el nombre significa que tienen un núcleo claro y bien estructurado. Hay una gran cantidad de especies de eucariotes unicelulares, unos de utilidad para el hombre, como las levaduras, y otros dañinos, como los microbios que producen el paludismo, la amibiasis y muchas otras enfermedades.

LOS ORGANISMOS UNICELULARES

Como ya se mencionó, hay una gran diversidad de microorganismos independientes unicelulares. Revisemos algunas de sus características más interesantes.

Las levaduras son microorganismos unicelulares de tipos muy diferentes; pertenecen a los hongos, y cuentan con muchas especies distintas. Tal vez las más conocidas sean las que se utilizan para la elaboración del vino, la cerveza y el pan, que pertenecen al género Saccharomyces. La utilidad de la levadura se remonta a épocas bíblicas, cuando no se sabía nada acerca de su naturaleza. Se dice que Noé descubrió por casualidad el vino; también se cuenta que una mujer de la misma época dejó descuidada la masa de trigo, y se encontró con que se había inflado, y al cocerla dio lugar a un producto más esponjoso y apetecible que la harina con agua y cocida. El proceso de elaboración de la cerveza es más complicado; se requiere germinar la cebada y prepararla en forma de malta para luego fermentarla con levadura.

Con el paso de los años y los siglos, los procedimientos se fueron perfeccionando para lograr mejores productos. La diversidad de panes que hay en el mundo es increíble. La elaboración del vino alcanza grados admirables de complejidad y hay miles de cervezas distintas.

Figura IV.1 Micrografía electrónica de una levadura.

Nos podemos preguntar ahora cómo es que la levadura interviene en la elaboración de estos productos. Como ya se mencionó en el capítulo II, la forma en que la levadura degrada la glucosa y otros azúcares difiere de la manera en que lo hacen los animales; de cada molécula de glucosa produce dos de alcohol y una de bióxido de carbono:

C6H12O6® 2CH3 - CH2 - OH + 2CO2

El alcohol es el componente principal de vinos y cervezas; el sabor particular de cada uno depende del material que se utilice para fermentar y de la cepa de levadura; además de los vinos de uva, los hay de miel, y se les puede preparar de distintos tipos de materiales azucarados. Hay igualmente una gran cantidad de otros materiales fermentados; nada más en nuestro país existen el pulque, el pozol, el tesgüino, el tepache, etc. Hay otro proceso que se agrega a la fermentación y que permite la elaboración de más bebidas alcohólicas: se fermenta casi cualquier material que contenga azúcares o almidones, como el jugo de caña, la papa, el maíz, el trigo, la cebada, etc., y luego se destila el fermentado para evaporar y condensar el alcohol, el cual se evapora como una mezcla de agua, 40% de alcohol y otros materiales volátiles, que le dan un sabor variable. De este procedimiento se obtienen los licores como el coñac, el ron, el tequila, etc., que no son en realidad sino soluciones de alcohol al 40%, con distintos aromatizantes.

El pan se produce por la sencilla razón de que las levaduras fermentan los azúcares de la masa, y el bióxido de carbono (que es un gas) queda atrapado. Al cocer la masa, las pequeñísimas burbujas del gas se dilatan y hacen que el pan se esponje.

Sin embargo, no fue sino hasta principios del siglo XIX cuando Schwann, en Alemania, descubrió que el material que se utilizaba para producir todas estas fermentaciones era un organismo vivo. Sin embargo, no fue fácil convencer a nadie de esta realidad; sus afirmaciones le valieron prácticamente la enemistad de los mismos científicos de la época, como Liebig, también alemán y sabio de gran influencia. Hubieron de pasar muchos años para que Pasteur hiciera sus célebres estudios sobre la fermentación en la producción de la cerveza francesa. Sus resultados fueron relativamente sencillos; encontró que la mala calidad de la cerveza de su país (incapaz de competir con la alemana) se debía a que durante las fermentaciones se producían contaminaciones con otros microorganismos, que malograban el proceso. Sus descubrimientos llevaron a mejorar la cerveza francesa, aunque no al grado de la alemana.

Hacia finales del siglo XIX, Buchner, también alemán, encontró que era posible romper las células de levadura y todavía lograr la fermentación. Fue entonces cuando surgió el planteamiento de que la fermentación era producida por ciertas sustancias, que se llamaron enzimas (que quiere decir "de la levadura"), capaces de convertir la glucosa en alcohol por medio de una serie de pasos secuenciales. Este descubrimiento estimuló a muchos otros investigadores, que poco a poco lograron definir todas y cada una de las reacciones de la fermentación. En realidad éste fue el nacimiento de la bioquímica.

Después, otros estudios llevaron a descubrir que la degradación de la glucosa es semejante en los animales. Karl Neuberg encontró también que la levadura, en condiciones especiales, puede producir glicerol, que se usó para fabricar nitroglicerina en la primera Guerra Mundial. Había nacido la biotecnología, pero también el mal uso que frecuentemente hacemos los humanos de nuestros conocimientos.

Durante muchos decenios, sabios de todo el mundo continuaron estudiando a la levadura por curiosidad; muchas industrias mejoraron sus procesos productivos de bebidas y de pan; actualmente, en el mundo se producen miles de toneladas de estas células maravillosas, que tan extraordinarios productos nos brindan.

Ya en épocas más recientes se ha encontrado que la levadura también se puede utilizar para producir sustancias muy diferentes a ella, al introducirle, por técnicas de ingeniería genética, genes de enzimas de otras células. Es indudable que falta mucho por conocer en relación con estos microorganismos.

Hay también otros microorganismos benéficos para el hombre, como algunas algas microscópicas. En México, por ejemplo, existe el caso de la espirulina, que se utiliza como complemento de la alimentación. Desafortunadamente se exageran sus propiedades y se pretende, sin razón, que una cápsula sustituya a una buena alimentación.

Pero así como hay organismos unicelulares buenos, los hay malos; dentro de los propios hongos hay algunos que atacan al hombre y a los animales. Tanto la medicina humana como la veterinaria tiene un capítulo especial, la micología, dedicado al estudio de las micosis, enfermedades producidas por distintas especies de hongos: las tiñas, el pie de atleta, la actinomicosis y muchos otros padecimientos.

Los protozoarios, otro tipo de organismos unicelulares, incluyen muchas especies de parásitos, es decir, organismos que no tienen la capacidad de vida libre, y que por lo tanto deben vivir a expensas de otros seres vivos.

He aquí las características de los protozoarios dañinos y de los efectos que producen en humanos y animales:

Las amibas. Invaden nuestro organismo y se asientan en el intestino, en el cual producen ulceraciones y daño. También pueden establecerse en otros órganos como el hígado y producir lesiones extensas en él.

Los plasmodios. Son microorganismos que producen el paludismo y tienen la particularidad de introducirse en nuestro organismo, alojarse dentro de nuestros glóbulos rojos y destruirlos. Esta es también una de las enfermedades más importantes que aquejan a los humanos.

LOS ORGANISMOS PLURICELULARES

Finalmente llegamos a los organismos pluricelulares, que desde los más sencillos, cuentan con ventajas que les fue dando la evolución, al agregarse células y sufrir el proceso llamado diferenciación. Por medio de éste, durante las divisiones sucesivas de el huevo, la célula de la que provienen todas las células de un animal o planta, se producen cambios que vienen programados en el DNA, que dan lugar a cambios en la forma, el comportamiento y la bioquímica de los distintos tipos celulares. Pero estos cambios no se efectúan por simple azar; dan lugar a ventajas de la asociación de distintos tipos de células y la reunión de verdaderas especialistas en determinadas funciones produce un organismo con capacidades enormemente mayores. Esto lo apreciamos mejor si pensamos en el grado máximo de especialización que ha logrado el ser humano frente a los demás organismos vivos.

UNA CÉLULA MUSCULAR

En la figura IV.2 se presenta la micrografía electrónica de un corte longitudinal y otro transversal de un músculo de los llamados estriados o esqueléticos, que corresponden al tejido muscular voluntario de los animales. Resaltan dos tipos de estructuras: en primer lugar un material fibroso de disposición regular en las miofibrillas, constituido con microfilamentos que en el corte longitudinal muestran una estructura definida en bandas claras, alternadas con bandas oscuras. En la misma figura se señala la nomenclatura de las diferentes zonas que se ven en el corte longitudinal. Otro de los detalles importantes que se observa en la micrografía electrónica, es la distribución uniforme y repetida de formaciones de una red tubular, llamada retículo endoplásmico, entre las miofibrillas. Rodeando a éstas se encuentra el material que representaría al citosol de otras células, y que en el músculo recibe el nombre de sarcoplasma. Además de las estructuras mencionadas entre las miofibrillas se encuentra también un número variable de mitocondrias, dependiendo del músculo de que se trate; mientras más activo es el músculo, mayor cantidad de estos organelos hay, y más uniforme es su arreglo alrededor de las miofibrillas.

Figura IV.2. Micrografía electrónica de una fibra muscular, en la que se aprecian los microfilamentos, que son los elementos contráctiles del músculo.

En la figura IV.3 se muestra luego la composición de las unidades de un músculo; las zonas I se alternan con las zonas A, para las que también se ha descrito una estructura definida; pero lo importante es que ambas están formadas por microfilamentos, y representan una especialización de éstos, imbricados o empalmados unos sobre otros, los filamentos gruesos de la zona A y los delgados de la zona I, ambos fijados por sus extremos a una especie de placa común.

Figura IV.3. Representación de las unidades funcionales de una fibra muscular, en donde se muestra más claramente su funcionamiento.

Si se separan las proteínas de un músculo se encuentra una proporción importante de dos componentes, la actina y la miosina, que forman un complejo entre ellas denominado actomiosina. Estas dos moléculas asociadas son capaces de romper al ATP, para dar ADP y fosfato inorgánico, produciendo al mismo tiempo el acortamiento de esta estructura fibrilar. Los estudios realizados han propuesto el esquema que se representa en la figura IV.4. Según la teoría, la miosina tiene la actividad de ATPasa (rompe al ATP para dar energía), y se encuentra asociada con la actina de tal modo que cuando se rompe el ATP, la energía del enlace fosforilado se utiliza para que las dos moléculas se deslicen una sobre otra, produciendo el acortamiento del complejo molecular.

Figura IV.4. El mecanismo de la contracción de una fibra muscular.

Si se toma en cuenta que un músculo está formado por millones de unidades de este tipo, no es difícil extrapolar lo que sucede con la asociación actina-miosina en el órgano completo y aceptar el modelo propuesto.

Resta por describir el mecanismo que se ha propuesto para explicar la producción de la contracción muscular ante la llegada de una señal, o sea una orden transmitida del cerebro u otras zonas del sistema nervioso por una fibra nerviosa para que se inicie el proceso.

Como se ve en la figura IV.5, las unidades de que está compuesto el músculo tienen una distribución especial y regular del retículo endoplásmico. Este sistema posee la capacidad de capturar al calcio (CA2+) del sarcoplasma, de manera que en éste, durante el reposo, su concentración es muy baja. En el momento en que llega a la célula un impulso nervioso, se produce un cambio eléctrico en la membrana, y ello da lugar a que el retículo sarcoplásmico libere al sarcoplasma parte del calcio que tiene. La hidrólisis o ruptura del ATP por la miosina requiere del calcio, de manera que la liberación de éste parece ser la que realmente desencadena la actividad de la miosina y la contracción muscular.

El mecanismo de la relajación, es decir, la interrupción de la contracción, es muy sencillo; cuando cesa el estímulo nervioso, el retículo sarcoplásmico vuelve a su estado anterior y por mecanismos especiales, captura el calcio que había liberado. Al disminuir la concentración de éste, que se requiere para que la miosina rompa al ATP y se contraiga, se detiene también la contracción de la fibra muscular, como se representa en la figura IV.5.

Figura IV.5. Al llegar un impulso nervioso, con la orden de contraer un músculo, la liberación de iones de calcio (Ca2+), que se requiere para que la actomiosina hidrolice al ATP, es la que realmente desencadena la contracción.

Mediante estos procesos, descritos en forma simplificada, los seres vivos cuentan con uno de los sistemas más eficientes que se conocen para transformar la energía química (del ATP) en energía mecánica. Ninguna máquina construida por el hombre reúne la velocidad de respuesta, ni la necesidad de una señal tan pequeña para funcionar, ni la eficiencia para transformar una energía en otra. El músculo, con su sistema de microfilamentos, es sólo un ejemplo de este tipo de mecanismo; dentro de los cuales hay otros sistemas de movilización celular, como los de los seudópodos y el movimiento amiboide, que existen en muchas células de organismos unicelulares y pluricelulares.

LAS CÉLULAS NERVIOSAS

Probablemente el grado máximo de especialización de una célula esté representado por las neuronas, que se encargan casi fundamentalmente de transmitir y modular la transmisión de los impulsos nerviosos. La naturaleza se vale de este mecanismo, aparentemente sencillo, y conecta unas células con otras, para integrar el funcionamiento de sistemas que pueden ser tan sencillos como un arco reflejo, constituido por dos neuronas, o tan complicadas como los procesos racionales, la percepción, etcétera.

La figura IV.6 es la representación de una neurona típica; se trata de una célula que cuenta con un cuerpo, donde se encuentra el núcleo, y una serie de prolongaciones, unas cortas llamadas dendritas, y otras más largas llamadas axones. Las primeras se encargan de recibir los impulsos nerviosos y las segundas de conducirlos y transmitirlos. Las terminaciones nerviosas, axones y dendritas, permiten a las células establecer conexiones entre sí. De esta forma se integran circuitos —desde los más sencillos hasta los muy complicados— por la conexión de muchísimas de ellas, mediante uniones que establecen las terminaciones mencionadas, y que reciben el nombre de sinapsis. Las sinapsis representan sitios especializados que se forman entre las terminaciones de una neurona y la superficie de otra, y son capaces de establecer conexiones entre ellas, al permitir el paso del impulso nervioso, habitualmente en un solo sentido.

Figura IV.6. Representación de una neurona.

Las células nerviosas deben su principal característica a sus membranas, que son las responsables de la conducción del impulso nervioso o corriente nerviosa. Si se introduce un microelectrodo finísimo, hecho de un tubo de vidrio estirado al calor, en el axón de una célula nerviosa, y se coloca otro en el exterior, se observa una diferencia de potencial (voltaje) de aproximadamente 90 milivoltios (casi 0.1 voltios). La figura IV.7 muestra el origen de ese potencial; la membrana, que se encuentra rodeada por un medio rico en iones de sodio (NA+), y pobre en iones de potasio (K+), cuenta con un sistema de transporte, una ATPasa, que al romper moléculas de ATP para dar ADP y fosfato y con la energía obtenida de la reacción, es capaz de expulsar tres iones de sodio al exterior e introducir dos iones de potasio. La distribución desigual de estos iones, y la tendencia a salir de los de potasio, son las responsables de que se establezca el potencial eléctrico antes mencionado.

Además del sistema de generación del potencial eléctrico hay también en la membrana un par de canales específicos, capaces de permitir la salida del potasio y la entrada del sodio, y así producir la descarga del potencial que se había generado durante el reposo (figura IV.7). En otras palabras, la conducción del impulso nervioso es una onda que se mueve a lo largo de las terminaciones nerviosas, en la cual los iones de sodio entran y los de potasio salen de la terminación nerviosa. Este sencillo mecanismo es la base de la conducción del impulso nervioso. Una vez que el impulso pasa, hay una ATPasa, que con su capacidad de "bombear" iones restituye el potencial que se había perdido o disminuido.

Figura IV.7. El potencial eléctrico de una célula nerviosa, su origen y su utilización para la conducción nerviosa. Ésta no es sino la propagación de una onda de disipación del potencial, originada por la salida del potasio previamente expulsado, por canales iónicos específicos.

Al llegar el impulso nervioso al extremo del axón, mediante el contacto que existe con otra neurona, a través de una sinapsis, se transmite por un mecanismo que puede ser eléctrico o químico. En el caso del mecanismo eléctrico, simplemente se transmite de una neurona a otra la depolarización, pasando el impulso de una célula a otra. En muchos otros casos, cuando el impulso nervioso llega la sinapsis, en lugar de transmitir la depolarización directamente, de la terminación llamada presináptica produce la liberación de sustancias químicas específicas, que varían de unas neuronas a otras en las distintas regiones del sistema nervioso, y que por su papel reciben el nombre de neurotransmisores. El neurotransmisor liberado al espacio intersináptico es como una señal que captan receptores también específicos de la postsinapsis, los cuales luego dan lugar a una respuesta, que suele ser la generación o el relevo del impulso nervioso, que sigue su camino. En la figura IV.8 se muestra en forma esquemática el mecanismo de la neurotransmisión química.

Como se señala en la figura IV.8, la neurotransmisión química no siempre da lugar a que el impulso nervioso siga adelante; con frecuencia se encuentran sinapsis en las que el neurotransmisor liberado, en lugar de generar un nuevo impulso nervioso en la neurona siguiente, produce un cambio tal que bloquea o disminuye el efecto de otros impulsos llegados de otra u otras neuronas. Este es el caso de los neurotransmisores inhibidores, que actúan como moduladores de la transmisión sináptica, y su importancia reside en que son una especie de "freno" de la transmisión de los impulsos nerviosos, que se regulan por este mecanismo.

En cuanto al mecanismo de la neurotransmisión, como en el músculo, los movimientos de Ca2+ desempeñan un papel de gran importancia en el fenómeno. La liberación del neurotransmisor no se produce en un ambiente libre de este catión, y durante la liberación del neurotransmisor se produce la captura de una cantidad de iones de calcio, que guarda relación con la cantidad liberada del primero. Los movimientos del Ca2+, como en el músculo, parecen originarse en cambios de permeabilidad de la membrana, como consecuencia de la depolarización que por la conducción llega hasta la presinapsis.

Figura IV.8. La transmisión sináptica.

LAS CÉLULAS SENSORIALES

Las células sensoriales cuentan con una extraordinaria especialización, y en realidad son parte del sistema nervioso y pueden considerarse como neuronas modificadas para la función que requiere el organismo. El caso más sencillo es tal vez el de las células auditivas, que pueden recibir las vibraciones del aire a través de la vibración del tímpano, que se transmite por la cadena de huesecillos del oído externo. Se trata simplemente de células capaces de percibir vibraciones y trasformarlas en impulsos nerviosos, que son transmitidos luego a los centros auditivos del cerebro para su procesamiento e integración final para la percepción. El caso de las células del tacto es muy similar, pero se trata de neuronas modificadas que responden a cambios en la presión. En ambos casos, cuando se aplica el estímulo correspondiente, la vibración en las células auditivas o la presión sobre los receptores táctiles, se abren canales iónicos en su superficie que dan lugar a la depolarización de su potencial eléctrico y luego a su transmisión como ondas de esta depolarización a otras neuronas y finalmente al sistema nervioso central.

En el caso del gusto y del olfato existen unos receptores especiales en su membrana, que pueden interactuar con gran diversidad de moléculas en concentraciones variables, mayores para los receptores del gusto, pero sumamente bajas en el caso de los olfatorios. Estos receptores, al recibir el estímulo por interactuar con alguna molécula del medio ambiente o de un alimento, a través de complicados mecanismos también dan lugar al mismo cambio del potencial de la membrana, y luego lo transmiten a otras neuronas y al sistema nervioso central.

Tal vez el caso más asombroso es el de los fotorreceptores, de la retina, por ejemplo. En este caso, como se muestra en la figura IV.9, la luz, al incidir sobre una molécula derivada de la vitamina A, el retinal, lo modifica, y como consecuencia de ello la forma modificada del retinal desencadena una serie de acontecimientos que llevan finalmente al cierre de unos canales del fotorreceptor y a su modificación en la actividad eléctrica, lo contrario de lo que sucede en otros receptores. Esta modificación de la actividad eléctrica también se transmite luego a otras neuronas y se envía al sistema nervioso central.

Figura IV.9. El funcionamiento de un receptor de la retina. La luz es capaz de actuar sobre el retinal, parte de la proteína rodopsina, y dar lugar al cierre de los canales de sodio de esas células. Este cambio del potencial de la membrana luego se transmite hacia el cerebro como un impulso nervioso.

Debe quedar claro que ésta es una sobresimplificación de los mecanismos, y que los fenómenos de la percepción son mucho más complicados que lo que aquí se ha descrito, pues no sólo implican la recepción de los estímulos correspondientes a cada uno de los sentidos, sino también la transmisión al sistema nervioso central, su integración y procesamiento para completar el fenómeno global de la percepción.

UNA CÉLULA ADIPOSA, ¿UNA CÉLULA FLOJA?

Podríamos pensar que las células adiposas sólo almacenan grasa y que su actividad metabólica es casi nula. Pero aunque tiene una escasa cantidad de citoplasma en una pequeña capa que rodea a una gran gota de grasa, su actividad metabólica es intensa, el papel de almacenes de grasa implica también un constante recambio de ésta, prácticamente en cualquier comida, y las células realizan una constante degradación y síntesis de las grasas. El proceso no es sencillo y además requiere de una cantidad elevada de energía, por lo que el tejido adiposo, como muchos otros, también necesita una vascularización profusa. Ésta es una de las razones por las cuales las personas obesas, al perder peso, no sólo pierden grasa, sino también un tejido metabólicamente activo y organizado.

Figura IV.10. Una célula adiposa y sus actividades.

LAS CÉLULAS DEL HÍGADO

Una célula hepática es tal vez la que realiza mayor actividad metabólica en el organismo animal; es el almacén de azúcares entre nuestras comidas, y es la que se encarga de proporcionarla a las demás células cuando no ingerimos alimento, además, en los periodos prolongados de ayuno, puede fabricarla a partir de otros materiales, principalmente los aminoácidos. El hígado es también el principal sitio de degradación de las moléculas de grasa; las rompe en fragmentos más pequeños y los distribuye, principalmente al músculo. También tiene como papel el hepatocito, la síntesis de muchas proteínas para el plasma sanguíneo. El hígado es el sitio principal de destrucción o neutralización de sustancias propias del organismo, pero también de otras extrañas a él, como tóxicos, medicamentos, etcétera. La especialización del hígado es tal, que puede considerarse como el órgano metabólico por excelencia.

OTRAS CÉLULAS

Los ejemplos que hemos mencionado no son sino una pequeña parte de las especializaciones que existen. He aquí algunos más. Las células renales tienen como papel filtrar nuestra sangre mediante complicados mecanismos de intercambio de muy diferentes sustancias. En las plantas, las células de las raíces tienen también mecanismos de gran eficiencia para capturar del suelo agua y sales. Un fenómeno semejante ocurre con las intestinales. Están también las células de nuestras glándulas, especializadas en la producción y liberación de hormonas muy diversas.

A fin de cuentas, la descripción de la célula que se realizó en la mayor parte de este pequeño libro es sólo un esquema alrededor del cual la naturaleza ha hecho cambios extraordinarios que le permiten realizar funciones tan diversas como las descritas. No obstante el tamaño de cada una de las células, es casi inimaginable y hasta ahora en gran parte desconocida la cantidad, variedad y precisión de las funciones que pueden introducirse en estructura tan pequeña, con moléculas mucho más pequeñas, organizadas mediante una estructura y organización asombrosas.

...

Descargar como  txt (29 Kb)  
Leer 18 páginas más »