COMPONENTE DE UN VECTOR
16649297Trabajo28 de Noviembre de 2014
4.955 Palabras (20 Páginas)465 Visitas
NTRODUCCIÓN
Las nociones de vectores están implícitamente contenidas en las reglas de composición de las fuerzas y de las velocidades, conocidas hacía el fin del siglo XVII.
Es en relación con la representación geométrica de los números llamados imaginario, como las operaciones vectoriales se encuentran por primera vez implícitamente realizadas, sin que el concepto de vector este aún claramente definido. Fue mucho más tarde, y gracias al desarrollo de la geometría moderna y de la mecánica, cuando la noción de vector y de operaciones vectoriales se concretó.
El alemán Grassman, en 1844, por métodos geométricos introdujo formalmente las bases del cálculo vectorial ( suma, producto escalar y vectorial.
El inglés Hamilton, por cálculos algebraicos, llegó a las mismas conclusiones que Grassman; empleó por primera vez los términos escalar y vectorial.
Hacia el final del siglo XIX, el empleo de los vectores se generalizó a toda la física. Bajo la influencia de los ingleses Hamilton Stokes, Maxwell y Heaviside, y del americano Gibbs (quien utilizó la notación del punto para el producto escalar y del x para el producto vectorial), se amplió el cálculo vectorial, introduciendo nociones más complejas, como los operadores vectoriales: gradiente, divergencia y rotacional.
COMPONENTE DE UN VECTOR
Es muy común que representemos un vector utilizando los valores de sus componentes.
Las componentes cartesianas de un vector son los vectores que se obtienen al proyectarlo sobre los ejes de un sistema de coordenadas situado en el origen del vector.
El siguiente simulador dibuja automáticamente las componentes del vector A. Puedes pulsar y arrastrar con el ratón el extremo del vector.
QUé ES UN VECTOR
El vector es un concepto que proviene de la física, en la que se distingue entre magnitudes escalares y magnitudes vectoriales. Mientras que la magnitud escalar se expresa con un número (por ejemplo, la masa de un cuerpo, el volumen, la capacidad de un depósito, la temperatura...), en la vectorial se necesita además la dirección y el sentido. Por ejemplo, cuando nos referimos a un movimiento, no basta con indicar el desplazamiento (módulo), sino también la dirección y el sentido del movimiento. Con este concepto podemos describir en física la velocidad, la aceleración, la fuerza...
Un vector fijo del plano es un segmento cuyos extremos están dados en un orden (segmento orientado). Se representa como AB (con una flecha en la parte superior) siendo A y B los extremos. Los puntos en que comienza y termina el vector se llaman origen y extremo, respectivamente.
VECTORES OPUESTOS
Un vector opuesto a otro es el que tiene el mismo punto de aplicación, módulo y dirección pero sentido contrario. Así el vector opuesto a es .
VECTORES PARALELOS
Es aquel que en ningún momento de su prolongación corta al otro vector paralelo a el.
VECTORES ORTOGONALES
Dos vectores son ortogonales si su producto escalar es cero.
Si además de ortogonales los vectores son unitarios se llaman ortonormales.
A veces nos piden construir una base ortonormal a partir de otra base que no es ortonormal. Esto se puede hacer por el método de Gram-Schmidt.
Sea B = {b1,b2,b3} una base que no es ortonormal. Los vectores:
c1 = b1
c2 = b2 - c1.b2/c1.c1(c1)
c3 = b3 - c1.b3/c1.c1(c1) - c2.b3/c2.c2(c2)
Leer más: http://www.monografias.com/trabajos64/vector/vector.shtml#ixzz3KNRKKvPG
VECTORES EQUIVALENTES
Dos vectores son equivalentes (a este nivel los consideramos iguales) si tienen el mismo módulo, dirección y sentido. Se suelen representar , , ..., o con negrita, u, v...
Se dice que un vector fijo tiene la misma dirección que otro si los segmentos que los definen pertenecen a rectas paralelas.
VECTORES NULO
En matemáticas, un vector nulo o vector cero se refiere a un vector que posee módulo (longitud) cero.
Por ejemplo, en el plano cartesiano, el vector nulo es el vector (0,0), es decir, que inicia y termina en el origen. Su representación gráfica es un punto.
En general en un espacio vectorial arbitrario V, el vector u nulo es el vector nulo si u + v = v + v + u para cualquier vector v.
Fijando una base, se tiene que el vector nulo siempre tiene las coordenadas (0,0, ..., 0).
El vector cero es un caso especial de tensor cero. Es el resultado del producto escalar por el número 0.
VECTORES UNITARIOS
En álgebra lineal, un vector unitario es un vector de módulo uno. Frecuentemente se lo llama también versor o vector normalizado.
MODULO DE UN VECTOR
El módulo de un vector es la longitud del segmento orientado que lo define.
El módulo de un vector es un número siempre positivo y solamente el vector nulo tiene módulo cero.
VECTOR LIBRE
Es todo vector del plano que tiene mismas características: mismos módulo, dirección y sentido.
Un vector libre es, pues, el conjunto de los vectores del plano que tienen mismo módulo, misma dirección y mismo sentido. Se llama vector libre a cada una de las clases de segmentos orientados equipolentes. Por tanto, cada vector libre está definido por un módulo, una dirección, y un sentido. Un vector libre queda caracterizado por su módulo, dirección y sentido. El vector libre es independiente del lugar en el que se encuentra.
Leer más: http://www.monografias.com/trabajos64/vector/vector2.shtml#ixzz3KNRAjesi
CONCLUSIÓN
Una magnitud que tiene una dirección y sentido al mismo tiempo y los vectores se representan con segmentos rectilíneos orientados, utilizando los vectores se puede resolver gráficamente cualquier problema relacionado con el movimiento de cualquier objeto bajo la influencia de varias fuerzas.
El uso sencillo de los vectores así como los cálculos utilizando vectores quedan ilustrados en este diagrama, que muestra el movimiento de una barca para atravesar una corriente de agua. El vector a, u A, indica el movimiento de la barca durante un determinado periodo de tiempo si estuviera navegando en aguas tranquilas; el vector b, o $, representa la deriva o empuje de la corriente durante el mismo periodo de tiempo. El recorrido real de la barca, bajo la influencia de su propia propulsión y de la corriente, se representa con el vector c, u B. Utilizando vectores, se puede resolver gráficamente cualquier problema relacionado con el movimiento de un objeto bajo la influencia de varias fuerzas.
Leer más: http://www.monografias.com/trabajos64/vector/vector2.shtml#ixzz3KNR0NGpe
Componentes de un vector
Componentes del vector.
Un vector en el espacio euclídeo tridimensional se puede expresar como una combinación lineal de tres vectores unitarios o versores perpendiculares entre sí que constituyen una base vectorial.
En coordenadas cartesianas, los vectores unitarios se representan por , , , paralelos a los ejes de coordenadas x, y, z positivos. Las componentes del vector en una base vectorial predeterminada pueden escribirse entre paréntesis y separadas con comas:
o expresarse como una combinación de los vectores unitarios definidos en la base vectorial. Así, en un sistema de coordenadas cartesiano, será
Estas representaciones son equivalentes entre sí, y los valores ax, ay, az, son las componentes de un vector que, salvo que se indique lo contrario, son números reales.
Una representación conveniente de las magnitudes vectoriales es mediante un vector columna o un vector fila, particularmente cuando están implicadas operaciones matrices (tales como el cambio de base), del modo siguiente:
Con esta notación, los vectores cartesianos quedan expresados en la forma:
El lema de Zorn, consecuencia del axioma de elección, permite establecer que todo espacio vectorial admite una base vectorial, por lo que todo vector es representable como el producto de unas componentes respecto a dicha base. Dado un vector sólo existen un número finito de componentes diferentes de cero.
Operaciones con vectores
Suma de vectores
Para sumar dos vectores libres (vector y vector) se escogen como representantes dos vectores tales que el extremo final de uno coincida con el extremo origen del otro vector.
Suma de vectores sobre un mismo punto
La suma de vectores está bien definida si ambos vectores pertenecen al mismo espacio vectorial, en física para que dos vectores puedan ser sumados deben estar aplicados en el mismo punto. La composición de fuerzas sobre un sólido rígido cuando los puntos de aplicación no coinciden lleva a la noción de momento de fuerza dados dos fuerzas con puntos de aplicación se definen la fuerza resultante como el par:[cita requerida]
Donde es la suma generalizada a vectores aplicados en diferentes puntos. El punto de aplicación es el punto de intersección de las rectas de acción de las fuerzas. Las componentes del vector de fuerza resultante es de hecho la suma de componentes ordinarias de vectores:
El momento resultante es el momento de fuerza del conjunto de fuerzas respecto al punto calculado para la fuerza resultante.
Método del paralelogramo
Método del paralelogramo.
Este método permite solamente sumar vectores de dos en dos. Consiste en disponer gráficamente los dos vectores de manera que los orígenes de ambos coincidan en un punto, trazando rectas paralelas a cada uno de los vectores, en el extremo del otro y de igual longitud,
...