Clasificacion De Graficos
19818315 de Mayo de 2013
3.188 Palabras (13 Páginas)618 Visitas
INTRODUCCION
En muchas ocasiones la información proporcionada en una tabla es tan singular o importante que se decide presentar esos resultados de forma gráfica. Cuando se decide utilizar el gráfico, este sustituye a la tabla, no la complementa. Por ello no se deben tener tantos gráficos como tablas. Como se presenta sólo uno de los dos, se acostumbra reflejar la información numérica en el gráfico para que no sea necesaria la tabla correspondiente. Incluso, un número innecesariamente grande de gráficos le puede restar lucidez al trabajo en lugar de proporcionarle calidad o rigor científico. Se debe lograr un balance entre estas dos formas de presentación de resultados (1).
El objetivo básico de un gráfico es transmitir la información de forma tal que pueda ser captada rápidamente, de un golpe de vista. Luego, un gráfico debe ser ante todo sencillo y claro, a pesar de su aspecto artístico, ya que se elabora para ser incluido en un trabajo científico.
Existen múltiples tipos de gráficos, pero aquí trataremos solamente de los usados más frecuentemente, que son: gráfico de barras simples, gráfico de sectores o circular (pastel), gráfico de barras múltiples, gráfico de barras compuestas, histograma, polígono de frecuencias, gráfico de frecuencias acumuladas y gráfico aritmético simple. También haremos una breve referencia a otros tipos de gráfico utilizados en ciertos temas del campo de la Medicina, como son los gráficos semilogarítmicos, los probabilísticos y los logísticos (2).
OBJETIVO
Explicar los elementos básicos necesarios a tener en cuenta para realizar una correcta representación gráfica de los datos.
DESARROLLO
Veamos primeramente algunos principios comunes en la construcción de gráficos:
• En su gran mayoría los gráficos se inscriben en un sistema de ejes coordenados, siendo el circular o de sectores una excepción.
• En uno de los ejes se representan las frecuencias observadas o los valores calculados a partir de los datos, mientras que en el otro se representa el criterio principal de clasificación (que aparece en el talón de la tabla correspondiente).
• La escala relativa al eje donde se representan frecuencias debe comenzar en cero. De ser necesario, se puede interrumpir 'adecuadamente' la escala. Decimos adecuadamente porque la forma de realizar esa ruptura depende del tipo de gráfico.
• La longitud de un eje debe ser, aproximadamente, entre una vez y una vez y media la del otro. Esta proporcionalidad es importante, pues garantiza la comparabilidad entre gráficos.
• Cada eje debe ser rotulado, es decir, indicar que representa, y en caso de que corresponda, la unidad de medida usada.
• Un gráfico no debe sobrecargarse de líneas o cifras, el solo da la idea general del fenómeno, pues los detalles están representados en la tabla correspondiente (3).
2.- Componentes de un gráfico.
Un gráfico, al igual que una tabla, está compuesto de las partes siguientes:
a.- Identificación del gráfico.
b.- Título del gráfico.
c.- Cuerpo del gráfico o gráfico propiamente dicho (incluye la clave o leyenda de ser necesaria esta).
d.- Pie del gráfico.
Las características de estos componentes, salvo el gráfico propiamente dicho, son las mismas de dichos componentes en la tabla o cuadro estadístico, así que no insistiremos en ellas y pasaremos directamente a discutir la construcción de los diferentes tipos de gráficos.
Debemos hacer una aclaración antes de continuar. En la actualidad es muy infrecuente encontrar un gráfico hecho a mano. Generalmente se emplean sistemas graficadores de microcomputadoras. Esto no invalida la necesidad de conocer las reglas y convenciones establecidas con respecto a la confección de los mismos. Dada la enorme libertad que brindan algunos de esos sistemas, en más de una oportunidad hemos visto gráficos confeccionados por estos medios que presentan errores, entre otras cosas, por seleccionar un tipo de gráfico no adecuado para la información que se desea representar (4, 5).
3.- Diferentes tipos de gráficos.
a) Gráfico de barras simples.
Se usa fundamentalmente para representar distribuciones de frecuencias de una variable cualitativa o cuantitativa discreta y, ocasionalmente, en la representación de series cronológicas o históricas. Uno de los ejes sirve para inscribir las frecuencias, ya sean absolutas o relativas (%), y el otro para la escala de clasificación utilizada. Un ejemplo de este tipo de gráfico es el que se presenta a continuación:
Cada clase se representa con una barra o rectángulo cuya altura (si el eje de frecuencias es el vertical) resulta proporcional a la frecuencia que representa. Todas las barras deben tener el mismo grosor y el espacio entre barras debe ser el mismo, teniendo un ancho de 0,5 a 1 vez el de las barras.
El orden de las barras en el gráfico debe ser el mismo que en la tabla que le sirve de fuente. Por ello, si no existe un criterio 'a priori' de orden entre las clases establecidas, pueden ordenarse las mismas (y, como es lógico, las barras en el gráfico) en orden ascendente o descendente de las frecuencias, para facilitar la interpretación de esos resultados.
b) Gráfico circular, de sectores o pastel.
El gráfico siguiente es un ejemplo típico de gráfico circular (confeccionado con los mismos valores del gráfico anterior):
Se usa, fundamentalmente, para representar distribuciones de frecuencias relativas (%) de una variable cualitativa o cuantitativa discreta. En este gráfico se hace corresponder la medida del ángulo de cada sector con la frecuencia correspondiente a la clase en cuestión. Si los 360º del círculo representan el 100 % de los datos clasificados, a cada 1% le corresponderán 3,6º. Luego, para obtener el tamaño del ángulo para un sector dado bastaría con multiplicar el por ciento correspondiente por 3,6º (por simple regla de tres).
Mediante un sector circular se representan las medidas angulares correspondientes a las diferentes categorías, respetando el orden establecido en la tabla, partiendo de un punto dado de la circunferencia. Ese punto dado generalmente es el punto más alto de la circunferencia (12 en el reloj). Si lo que se representa en cada sector no puede colocarse dentro del mismo, se elabora una leyenda o se coloca fuera, adyacente al mismo. Se acostumbra a diferenciar los sectores con tramas o colores diferentes, lo que hace que resulte un gráfico más vistoso que el de barras simples.
c) Gráfico de barras múltiples.
Se usa para representar las frecuencias observadas en clasificaciones dobles, es decir, cuando son dos los criterios de clasificación, para variables cualitativas o cuantitativas discretas. Su forma de construcción es similar a la del gráfico de barras simples, sólo que en este caso se representan dos variables. El hecho de ser doble, triple, cuádruple, etc., parte del número de clases que tenga la variable, que no es el criterio principal de clasificación. Las barras que integran una barra múltiple se colocan juntas o ligeramente solapadas.
Veamos un ejemplo de este tipo de gráfico:
Este es un gráfico de barras triples. En la leyenda aparece el criterio de clasificación que complementa al que aparece en el eje de categorías. Note la separación entre los “tríos” de barras.
d) Gráfico de barras compuestas.
Su objetivo es la representación de las frecuencias relativas (%) observadas en clasificaciones dobles, es decir, cuando son dos los criterios de clasificación, para variables cualitativas o cuantitativas discretas.
Su forma de construcción es la siguiente: cada barra representa el 100 % de los individuos en cada clase del criterio principal de clasificación y se divide, proporcionalmente, en los por cientos correspondientes a las clases del otro criterio de clasificación. Como es lógico, las diferentes partes en que se dividen las barras compuestas se diferencian con tramas o colores diferentes.
e) Histograma.
Este gráfico se usa para representar una distribución de frecuencias de una variable cuantitativa continua.
Habitualmente se representa la frecuencia observada en el eje Y, y en el eje X la variable. La escala del eje correspondiente a la variable se rotula con los límites inferiores de notación de las clases consideradas y se agrega al final el que le correspondería a una clase subsiguiente inexistente. En este caso, las frecuencias deben resultar proporcionales no a la altura de las barras, sino al área de las mismas, lo que significa que la obtención de las alturas de las barras resulta un poco más compleja que en los gráficos anteriores. Además, las barras van contiguas y no separadas, por la naturaleza continua de la variable de clasificación.
Para lograr la proporcionalidad entre la frecuencia y el área de la barra que esta representa el procedimiento es el siguiente: sabemos que el área de un rectángulo es el producto de la base por la altura y que la base de una barra en el gráfico es, precisamente, la amplitud del intervalo de clase, luego la formulación de esa 'proporcionalidad' sería:
frecuencia observada = amplitud del intervalo* altura de la barra
Conocemos la frecuencia observada y la amplitud de cada uno de los intervalos, por tanto, para calcular las alturas de las barras sólo se tendría que despejar en la fórmula correspondiente, lo que quedaría:
altura de la barra = frecuencia observada
...