ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Historia De Los Numeros Naturales

bosito10 de Febrero de 2013

645 Palabras (3 Páginas)912 Visitas

Página 1 de 3

Historia de los Números Naturales

Antes de que surgieran los números para la representación de cantidades, el ser humano usó otros métodos para contar, utilizando para ello objetos como piedras, palitos de madera, nudos de cuerdas, o simplemente los dedos. Más adelante comenzaron a aparecer los símbolos gráficos como señales para contar, por ejemplo marcas en una vara o simplemente trazos específicos sobre la arena. Pero fue en Mesopotamia alrededor del año 4.000 a. C. donde aparecen los primeros indicios de la creacion de los números que consistieron en grabados de señales en formas de cuñas sobre pequeños tableros de arcilla empleando para ello un palito aguzado. De aquí el nombre de escritura cuneiforme. Este sistema de numeración fue adoptado más tarde, aunque con símbolos gráficos diferentes, en la Grecia Antigua y en la Antigua Roma. En la Grecia antigua se empleaban simplemente las letras de su alfabeto, mientras que en la antigua Roma además de las letras, se utilizaron algunos símbolos.

Quien colocó al conjunto de los números naturales sobre lo que comenzaba a ser una base sólida, fue Richard Dedekind en el siglo XIX. Este los derivó de una serie de postulados (lo que implicaba que la existencia del conjunto de números naturales se daba por cierta), que después precisó Peano dentro de una lógica de segundo orden, resultando así los famosos cinco postulados que llevan su nombre. Frege fue superior a ambos, demostrando la existencia del sistema de números naturales partiendo de principios más fuertes. Lamentablemente la teoría de Frege perdió, por así decirlo, su credibilidad y hubo que buscar un nuevo método. Fue Zermelo quien demostró la existencia del conjunto de números naturales, dentro de su teoría de conjuntos y principalmente mediante el uso del axioma de infinitud que, con una modificación de este hecha por Adolf Fraenkel, permite construir el conjunto de números naturales como ordinales según von Neumann.

Las propiedades de los números naturales son:

1. Que un número natural va después del otro

2. Que dentro de dos números naturales consecutivos no puede haber otro

3. Que son infinitos

Los números naturales son los números que usamos para contar; uno, dos, tres, cuatro, etc. Les damos un nombre, "Números naturales" para distinguirlos de otros números, como "un medio", "cuatro tercios", "tres punto siete", "menos cinco"; es decir, de los números fraccionarios (1/2), los números con punto decimal (3.7) y los números negativos (-5).

El hombre primitivo solo necesitó algunos cuantos números, los cuales represento mediante marcas en huesos o madera. Esta representación de los números, con una marca por cada elemento, solo es práctica para cantidades muy pequeñas, pero no sirve para números como 5,000, o incluso números no tan grandes, como 82 o 76. Al irse desarrollando la humanidad se hizo necesario una mejor forma de representar a los números.

Una de las primeras ideas utilizadas para representar los números de manera mas breve fue la agrupación, en la cual un símbolo representa un grupo de números. Por ejemplo, los antiguos egipcios agrupaban los números de 10 en 10.

Las formas de escritura de los números en los sistemas numéricos egipcio y romano no eran adecuadas para números relativamente grandes (como 1999, 123 422) ni para los cálculos aritméticos. Fueron necesarios otros sistemas numéricos que utilizaran menos símbolos.

Por ejemplo, varios pueblos de la antigua Babilonia (Irak) utilizaron un sistema numérico con solo dos símbolos: una cuña que apunta hacia abajo y una cuña que apunta hacia la izquierda. En este sistema la cuña hacia la izquierda representaba una hacia abajo.

La forma de estructurar los números era muy parecida a la de los egipcios. Sin embargo, a partir

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com