LA ECUACION CANONICA
mkillInforme1 de Mayo de 2013
364 Palabras (2 Páginas)834 Visitas
LA ECUACION CANONICA
Una ecuación canónica se usa con frecuencia en matemáticas para indicar que esa ecuación es natural, como debe ser e independiente de elecciones arbitrarias, que es absoluto y no relativo a un observador, que es intrínseco y no depende de un sistema de referencia o de un sistema de coordenadas, que pertenece a la estructura propia de lo que estudiamos.
La ecuación canónica o segmentaria de la recta es la expresión de la recta en función de los segmentos que ésta determina sobre los ejes de coordenadas.
a es la abscisa en el origen de la recta.
b es la ordenada en el origen de la recta.
Los valores de a y de b se se pueden obtener de la ecuación general.
Si y = 0 resulta x = a.
Si x = 0 resulta y = b.
Una recta carece de la forma canónica en los siguientes casos:
1Recta paralela a OX, que tiene de ecuación y = n
2Recta paralela a OY, que tiene de ecuación x = k
3Recta que pasa por el origen, que tiene de ecuación y = mx
Ejemplos
Una recta determina sobre los ejes coordenados, segmentos de 5 y 3 unidades, respectivamente. Hallar su ecuación.
Hallar la ecuación canónica de la recta que pasa por P(−2, 1) y tiene por vector director v = (3, −4).
Hallamos la ecuación en forma continua:
Pasamos a la general:
−4x −8 = 3y -3 4x + 3y + 5 = 0
Si y = 0 x = −5/4 = a.
Si x = 0 y = −5/3 = b.
La recta r ≡ x − y + 4 = 0 forma con los ejes un triángulo del que se pide su área.
La recta forma un triángulo rectángulo con el origen y sus catetos son la abscisa y la ordenada en el origen.
Si y = 0 x = −4 = a.
Si x = 0 y = 4 = b.
La ecuación canónica es:
El área es:
Una recta pasa por el punto A(1. 5) y determina con los ejes de coordenadas un triángulo de 18 u2 de superficie. ¿Cuál es la ecuación de la recta?
Aplicamos la ecuación canónica:
El área del triángulo es:
Resolvemos el sistema:
...