Matematicas
tazmania88120629 de Marzo de 2014
791 Palabras (4 Páginas)252 Visitas
Diagrama de Bode
Diagrama de Bode de un filtro paso bajo Butterworth de primer orden (con un polo).
Un Diagrama de Bode es una representación gráfica que sirve para caracterizar la respuesta en frecuencia de un sistema. Normalmente consta de dos gráficas separadas, una que corresponde con la magnitud de dicha función y otra que corresponde con la fase. Recibe su nombre del científico senegalés que lo desarrolló, Hendrik Wade Bode.
Es una herramienta muy utilizada en el análisis de circuitos enelectrónica, siendo fundamental para el diseño y análisis de filtrosy amplificadores.
El diagrama de magnitud de Bode dibuja el módulo de la función de transferencia (ganancia) en decibelios en función de la frecuencia (o la frecuencia angular) en escala logarítmica. Se suele emplear en procesado de señal para mostrar la respuesta en frecuencia de un sistema lineal e invariante en el tiempo.
El diagrama de fase de Bode representa la fase de la función de transferencia en función de la frecuencia (o frecuencia angular) en escala logarítmica. Se puede dar en grados o en radianes. Permite evaluar el desplazamiento en fase de una señal a la salida del sistema respecto a la entrada para una frecuencia determinada. Por ejemplo, tenemos una señal Asin(ωt) a la entrada del sistema y asumimos que el sistema atenúa por un factor x y desplaza en fase −Φ. En este caso, la salida del sistema será (A/x) sin(ωt − Φ). Generalmente, este desfase es función de la frecuencia (Φ= Φ(f)); esta dependencia es lo que nos muestra el Bode. En sistemas eléctricos esta fase deberá estar acotada entre -90° y 90°.
La respuesta en amplitud y en fase de los diagramas de Bode no pueden por lo general cambiarse de forma independiente: cambiar la ganancia implica cambiar también desfase y viceversa. En sistemas de fase mínima (aquellos que tanto su sistema inverso como ellos mismos son causales y estables) se puede obtener uno a partir del otro mediante la transformada de Hilbert.
Si la función de transferencia es una función racional, entonces el diagrama de Bode se puede aproximar con segmentos rectilíneos. Estas representaciones asintóticas son útiles porque se pueden dibujar a mano siguiendo una serie de sencillas reglas (y en algunos casos se pueden predecir incluso sin dibujar la gráfica).
Esta aproximación se puede hacer más precisa corrigiendo el valor de las frecuencias de corte (“diagrama de Bode corregido”).
El uso de cálculo logarítmico nos va a permitir simplificar funciones del tipo
a un simple sumatorio de los logaritmos de polos y ceros:
Supongamos que la función de transferencia del sistema objeto de estudio viene dada por la siguiente transformada de Laplace:
donde , e son constantes.
Ejemplo[editar]
Un filtro paso bajo RC, por ejemplo, tiene la siguiente respuesta en frecuencia:
La frecuencia de corte (fc) toma el valor (en hercios):
.
La aproximación lineal del diagrama consta de dos líneas agudos y centimetricos:
• para frecuencias por debajo de fc es una línea horizontal a 0 dB
• para frecuencias por encima de fc es una línea con pendiente de -20 dB por década.
Estas dos líneas se encuentran en la frecuencia de corte. Observando el gráfico se verá que a frecuencias bastante por debajo de dicha frecuencia, el circuito tendrá una atenuación de 0 decibelios. Por encima, la señal se atenuará, y a mayor frecuencia, mayor atenuación.
Aplicaciones[editar]
Los diagramas de Bode son de amplia aplicación en la Ingeniería de Control, pues permiten representar la magnitud y la fase de la función de transferencia de
...