ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

PLANCHAS


Enviado por   •  30 de Enero de 2014  •  Tesis  •  2.234 Palabras (9 Páginas)  •  231 Visitas

Página 1 de 9

INTRODUCCION

Las proteínas son biomoléculas formadas básicamente por carbono, hidrógeno, oxígeno y nitrógeno. Pueden además contener azufre y en algunos tipos de proteínas, fósforo, hierro, magnesio y cobre entre otros elementos.

Pueden considerarse polímeros de unas pequeñas moléculas que reciben el nombre de aminoácidos y serían, por tanto, las monómeras unidades. Los aminoácidos están unidos mediante enlaces peptídicos. La unión de un bajo número de aminoácidos da lugar a un péptido; si el número de aminoácidos que forma la molécula no es mayor de 10, se denomina oligopéptido, si es superior a 10 se llama polipéptido y si el número es superior a 50 aminoácidos se habla ya de proteína.

Por tanto, las proteínas son cadenas de aminoácidos que se pliegan adquiriendo una estructura tridimensional que les permite llevar a cabo miles de funciones. Las proteínas están codificadas en el material genético de cada organismo, donde se especifica su secuencia de aminoácidos, y luego son sintetizadas por los ribosomas.

Las proteínas desempeñan un papel fundamental en los seres vivos y son las biomoléculas más versátiles y más diversas. Realizan una enorme cantidad de funciones diferentes, entre ellas funciones estructurales, enzimáticas, transportadora.

LAS PROTEINAS

Las proteínas son las moléculas que hacen el ser, entendido en el sentido de que son el fenotipo, que es lo que caracteriza externamente a un individuo. Estructuralmente son polímeros formados por la unión de los monómeros llamados aminoácidos, cada uno con una estructura como la que aparece a la izquierda, es decir, tienen una función ácida y una básica como su nombre indica. En estas moléculas, como en los azúcares, se puede apreciar un centro de asimetría en el carbono (el C2, después del carbono carboxílico), pero la diferencia es que en los aminoácidos la familia más numerosa es la L. Se cuentan veinte aminoácidos proteinogenéticos, cada uno de los cuales tiene una cadena lateral R distinta, y se unen entre sí formando péptidos mediante enlaces amida, por lo que el enlace se llama peptídico. Las proteínas son en realidad péptidos con un elevado número de restos (así se llama a cada monómero que forma parte de una cadena), y pueden actuar solas o combinadas para realizar la función propia de cada una de ellas, desde la visión (opsina) hasta la defensa del organismo (anticuerpos), pasando por la contracción muscular (miosina y actina), la formación de estructuras de soporte (citoesqueleto) y la catálisis a modo de enzimas como función más representativa (pero ya sabemos que hay moléculas de ARN capaces de catalizar determinadas reacciones, que son los ribosomas).

ESTRUCTURA DE UNA PROTEINA:

Forma y estructura

Después de tener el polímero de aminoácidos fabricado, todavía tiene que sufrir una serie de modificaciones, tanto espontáneas como catalizadas, para poder tomar su forma definitiva, llamada conformación nativa. Esta será la única forma en la que la proteína pueda realizar la función para la que ha sido diseñada, porque es esencial la distribución espacial de las distintas cadenas R de cada aminoácido para que se pueda formar un sitio en el que la catálisis sea posible (ver 1 Introducción). La forma definitiva de una proteína viene codificada en gran parte por la propia secuencia de aminoácidos, de tal modo que las interacciones débiles que se establecen entre los distintos radicales R (fuerzas de Van der Waals, puentes de hidrógeno, fuerzas iónicas e interacciones hidrofóbicas) son capaces de obligar a la cadena a formar determinadas estructuras en distintos órdenes de complejidad, llamadas estructuras secundarias, supersecundarias, dominios y estructuras terciarias (la estructura primaria es la propia secuencia de aminoácidos). Adquiriendo las distintas estructuras queda entonces la proteína como un esqueleto carbonado, que así se llama a la hilera de átomos implicados en los enlaces peptídicos (N-C-C-N-C-C...), del que sobresalen distintos grupos funcionales, que son los que llevan los diferentes grupos R. Con tal diversidad de funciones químicas de las que echar mano, no es de extrañar que las proteínas sean las moléculas catalíticas más importantes de la vida.

Sin embargo el plegamiento no está totalmente determinado por la estructura primaria, sino que hay unas moléculas muy pequeñas, llamadas chaperoninas (del inglés chaperon: carabina, acompañante), que se unen al péptido en formación y le ayudan a alcanzar su conformación definitiva; es decir, el plegamiento en el medio celular está asistido.

Algunas proteínas no tienen suficiente información para realizar por sí mismas la función para la que se han sintetizado, por lo que se unen a moléculas pequeñas, generalmente vitaminas, que realizan la función, generalmente oxidación y reducción reversibles, pero dirigidas y modificadas según la cadena polipeptídica en cuestión. Es decir, hay varias moléculas que están presentes como cofactores en muchas enzimas diferentes, pero que ven modificada su acción por la proteína a la que se unan, como si fueran instrumentos “tontos” que pueden hacer algo, pero que la proteína les dice dónde y cómo. Además la acción de las enzimas puede verse modificada por distintas transformaciones covalentes como la fosforilación, palmitoilación, DP-ribosilación o unión a una cadena terpénica para trasladarla a la membrana desde el citoplasma.

Funciones de las proteínas

Las proteínas determinan la forma y la estructura de las células y dirigen casi todos los procesos vitales. Las funciones de las proteínas son específicas de cada una de ellas y permiten a las células mantener su integridad, defenderse de agentes externos, reparar daños, controlar y regular funciones, etc...Todas las proteínas realizan su función de la misma manera: por unión selectiva a moléculas. Las proteínas estructurales se agregan a otras moléculas de la misma proteína para originar una estructura mayor. Sin embargo, otras proteínas se unen a moléculas distintas: los anticuerpos a los antígenos específicos, la hemoglobina al oxígeno, las enzimas a sus sustratos, los reguladores de la expresión génica al ADN, las hormonas a sus receptores específicos, etc...

A continuación se exponen algunos ejemplos de proteínas y las funciones que desempeñan:

Función

...

Descargar como (para miembros actualizados)  txt (16 Kb)  
Leer 8 páginas más »
Disponible sólo en Clubensayos.com