ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Prueba De Hipotesis

cazp79011 de Agosto de 2011

4.011 Palabras (17 Páginas)1.815 Visitas

Página 1 de 17

PRUEBA DE HIPOTESIS

INTRODUCCION

Dentro del estudio de la inferencia estadística, se describe como se puede tomar una muestra aleatoria y a partir de esta muestra estimar el valor de un parámetro poblacional en la cual se puede emplear el método de muestreo y el teorema del valor central lo que permite explicar como a partir de una muestra se puede inferir algo acerca de una población, lo cual nos lleva a definir y elaborar una distribución de muestreo de medias muestrales que nos permite explicar el teorema del limite central y utilizar este teorema para encontrar las probabilidades de obtener las distintas medias maestrales de unapoblación.

Pero es necesario tener conocimiento de ciertos datos de la población como la media, la desviación estándar o la forma de la población, pero a veces no se dispone de esta información.

En este caso es necesario hacer una estimación puntual que es un valor que se usa para estimar un valor poblacional. Pero una estimación puntual es un solo valor y se requiere un intervalo de valores a esto se denomina intervalote confianza y se espera que dentro de este intervalo se encuentre el parámetro poblacional buscado. También se utiliza una estimación mediante un intervalo, el cual es un rango de valores en el que se espera se encuentre el parámetro poblacional

En nuestro caso se desarrolla un procedimiento para probar la validez de una aseveración acerca de un parámetro poblacional este método es denominado Prueba de hipótesis para una muestra.

HIPOTESIS Y PRUEBA DE HIPOTESIS

Tenemos que empezar por definir que es una hipótesis y que es prueba de hipótesis.

Hipótesis es una aseveración de una población elaborado con el propósito de poner aprueba, para verificar si la afirmación es razonable se usan datos.

En el análisis estadístico se hace una aseveración, es decir, se plantea una hipótesis, después se hacen las pruebas para verificar la aseveración o para determinar que no es verdadera.

Por tanto, la prueba de hipótesis es un procedimiento basado en la evidencia muestral y la teoría de probabilidad; se emplea para determinar si la hipótesis es una afirmación razonable.

Prueba de una hipótesis: se realiza mediante un procedimiento sistemático de cinco paso:

Siguiendo este procedimiento sistemático, al llegar al paso cinco se puede o no rechazar la hipótesis, pero debemos de tener cuidado con estadeterminación ya que en la consideración de estadística no proporciona evidencia de que algo sea verdadero. Esta prueba aporta una clase de pruebamás allá de una duda razonable. Analizaremos cada paso en detalle.

Objetivo de la prueba de hipótesis.

El propósito de la prueba de hipótesis no es cuestionar el valor calculado del estadístico (muestral), sino hacer

un juicio con respecto a la diferencia entre estadístico de muestra y un valor planteado del parámetro.

DISTRIBUCION BINOMIAL.

En estadística, la distribución binomial es una distribución de probabilidad discreta que mide el número de éxitos en una secuencia de n ensayos independientes de Bernoulli con una probabilidad fija p de ocurrencia del éxito entre los ensayos.

Un experimento de Bernoulli se caracteriza por ser dicotómico, esto es, sólo son posibles dos resultados. A uno de estos se denomina éxito y tiene una probabilidad de ocurrencia p y al otro, fracaso, con una probabilidad q = 1 - p. En la distribución binomial el anterior experimento se repite n veces, de forma independiente, y se trata de calcular la probabilidad de un determinado número de éxitos. Para n = 1, la binomial se convierte, de hecho, en una distribución de Bernoulli.

Para representar que una variable aleatoria X sigue una distribución binomial de parámetros n y p, se escribe:

La distribución binomial es la base del test binomial de significación estadística.

Ejemplos

Las siguientes situaciones son ejemplos de experimentos que pueden modelizarse por esta distribución:

 Se lanza un dado diez veces y se cuenta el número X de treses obtenidos: entonces X ~ B(10, 1/6)

 Se lanza una moneda cuatro veces y se cuenta el número X de caras obtenidas: entonces X ~ B(4, 1/2)

 Una partícula se mueve unidimensionalmente con probabilidad q de moverse hacia atrás y 1-q de moverse hacia adelante

Experimento Binomial

Existen muchas situaciones en las que se presenta una experiencia binomial. Este tipo de experiencias se caracteriza por estar formada por un número predeterminado n de experimentos iguales. Cada uno de los experimentos es independiente de los restantes (la probabilidad del resultado de un experimento no depende del resultado del resto). El resultado de cada experimento ha de admitir sólo dos categorías (a las que se denomina éxito y fracaso). Las probabilidades de ambas posibilidades han de ser constantes en todos los experimentos (se denotan como p y q o p y 1-p).

Se designa por X a la variable que mide el número de éxitos que se han producido en los n experimentos.

Cuando se dan estas circunstancias, se dice que la variable X sigue una distribución de probabilidad binomial, y se notaB(n,p).

Características analíticas

Su función de probabilidad es

donde

siendo las combinaciones de en ( elementos tomados de en )

Propiedades características

Relaciones con otras variables aleatorias

Si n tiende a infinito y p es tal que producto entre ambos parámetros tiende a , entonces la distribución de la variable aleatoria binomial tiende a una distribución de Poisson de parámetro λ.

Por último, se cumple que cuando n es muy grande (usualmente se exige que ) la distribución binomial puede aproximarse mediante la distribución normal.

Propiedades reproductivas

Dadas n variables binomiales independientes, de parámetros ni (i = 1, ..., n) y p, su suma es también una variable binomial, de parámetros n1+ ... + nn, y p, es decir,

TEORIA DE ESPERA

Introducción

Las colas son un aspecto de la vida moderna que nos encontramos continuamente en nuestras actividades diarias. En el contador de un supermercado, accediendo al metro, en los bancos, etc., el fenómeno de las colas surge cuando unos recursos compartidos necesitan ser accedidos para dar servicio a un elevado número de trabajos o clientes.

El estudio de las colas es importante porque proporciona tanto una base teórica del tipo de servicio que podemos esperar de un determinado recurso,como la forma en la cual dicho recurso puede ser diseñado para proporcionar un determinado grado de servicio a sus clientes.

Todavía más frecuentes, si cabe, son las situaciones de espera en el contexto de la informática, las telecomunicaciones y, en general, las nuevas tecnologías. Así, por ejemplo, los procesos enviados a un servidor para ejecución forman colas de espera mientras no son atendidos, la informaciónsolicitada, a través de Internet, a un servidor Web puede recibirse con demora debido a congestión en la red o en el servidor propiamente dicho, podemos recibir la señal de líneas ocupadas si la central de la que depende nuestro teléfono móvil está colapsada en ese momento, etc.

Debido a lo comentado anteriormente, se plantea como algo muy útil el desarrollo de una herramienta que sea capaz de dar una respuesta sobre las características que tiene un determinado modelo de colas.

Teoría de Cola

La teoría de colas es el estudio matemático del comportamiento de líneas de espera. Esta se presenta, cuando los "clientes" llegan a un "lugar" demandando un servicio a un "servidor", el cual tiene una cierta capacidad de atención. Si el servidor no está disponible inmediatamente y el clientedecide esperar, entonces se forma la línea de espera.

Una cola es una línea de espera y la teoría de colas es una colección de modelos matemáticos que describen sistemas de línea de espera particulares o sistemas de colas. Los modelos sirven para encontrar un buen compromiso entre costes del sistema y los tiempos promedio de la línea de espera para unsistema dado.

Los sistemas de colas son modelos de sistemas que proporcionan servicio. Como modelo, pueden representar cualquier sistema en donde los trabajos o clientes llegan buscando un servicio de algún tipo y salen después de que dicho servicio haya sido atendido. Podemos modelar los sistemas de este tipo tanto como colas sencillas o como un sistema de colas interconectadas formando una red de colas. El modelo de colas sencillo puede usarse para representar una situación típica en la cual los clientes llegan, esperan si los servidores están ocupados, son servidos por un servidor disponible y se marchan cuando se obtiene el servicio requerido.

Con frecuencia, las empresas deben tomar decisiones respecto al caudal de servicios que debe estar preparada para ofrecer. Pero, por otro lado, carecer de la capacidad de servicio suficiente causa colas excesivamente largas en ciertos momentos. Cuando los clientes tienen que esperar en una cola para recibir nuestros servicios, están pagando un coste, en tiempo, más alto del que esperaban. Las líneas de espera largas también son costosas por tanto para la empresa ya que producen pérdida de prestigio y pérdida de clientes. El

...

Descargar como (para miembros actualizados) txt (25 Kb)
Leer 16 páginas más »
Disponible sólo en Clubensayos.com