ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

RADIACION

francisco04510 de Mayo de 2015

5.985 Palabras (24 Páginas)144 Visitas

Página 1 de 24

Penetración de la radiación electromagnética[editar]

En función de la frecuencia, las ondas electromagnéticas pueden no atravesar medios conductores. Esta es la razón por la cual las transmisiones de radio no funcionan bajo el mar y los teléfonos móviles se queden sin cobertura dentro de una caja de metal. Sin embargo, como la energía no se crea ni se destruye, cuando una onda electromagnética choca con un conductor pueden suceder dos cosas. La primera es que se transformen en calor: este efecto tiene aplicación en los hornos de microondas. La segunda es que se reflejen en la superficie del conductor (como en un espejo).

Refracción[editar]

La velocidad de propagación de la radiación electromagnética en el vacío es c. La teoría electromagnética establece que:

siendo y la permitividad eléctrica y la permeabilidad magnética del vacío respectivamente.

En un medio material la permitividad eléctrica tiene un valor diferente a . Lo mismo ocurre con la permeabilidad magnética y, por tanto, la velocidad de la luz en ese medio será diferente a c. La velocidad de propagación de la luz en medios diferentes al vacío es siempre inferior a c.

Cuando la luz cambia de medio experimenta una desviación que depende del ángulo con que incide en la superficie que separa ambos medios. Se habla, entonces, de ángulo incidente y ángulo de transmisión. Este fenómeno, denominadorefracción, es claramente apreciable en la desviación de los haces de luz que inciden en el agua. La velocidad de la luz en un medio se puede calcular a partir de su permitividad eléctrica y de su permeabilidad magnética de la siguiente manera:

Dispersión[editar]

Dispersión de la luz blanca en un prisma.

La permitividad eléctrica y la permeabilidad magnética de un medio diferente del vacío dependen, además de la naturaleza del medio, de la longitud de onda de la radiación. De esto se desprende que la velocidad de propagación de la radiación electromagnética en un medio depende también de la longitud de onda de dicha radiación. Por tanto, la desviación de un rayo de luz al cambiar de medio será diferente para cada color (para cada longitud de onda). El ejemplo más claro es el de un haz de luz blanca que se "descompone" en colores al pasar por un prisma. La luz blanca es realmente la suma de haces de luz de distintas longitudes de onda, que son desviadas de manera diferente. Este fenómeno se llama dispersión. Es el causante de la aberración cromática, el halo de colores que se puede apreciar alrededor de los objetos al observarlos con instrumentos que utilizan lentes como prismáticos o telescopios.

Radiación por partículas aceleradas[editar]

Artículo principal: Fórmula de Larmor

Una consecuencia importante de la electrodinámica clásica es que una partícula cargada en movimiento acelerado (rectilíneo, circular o de otro tipo) debe emitir ondas electromagnéticas siendo la potencia emitida proporcional al cuadrado de su aceleración, de hecho la fórmula de Larmor para la potencia emitida viene dada por:

Donde:

es la carga eléctrica de la partícula.

es la aceleración de la partícula.

la permitividad eléctrica del vacío.

es la velocidad de la luz.

Un ejemplo de este fenómeno de emisión de radiación por parte de partículas cargadas es la radiación de sincrotrón.

Espectro electromagnético[editar]

Artículo principal: Espectro electromagnético

Atendiendo a su longitud de onda, la radiación electromagnética recibe diferentes nombres, y varía desde los energéticosrayos gamma (con una longitud de onda del orden de picómetros) hasta las ondas de radio (longitudes de onda del orden de kilómetros), pasando por el espectro visible (cuya longitud de onda está en el rango de las décimas de micrómetro). El rango completo de longitudes de onda es lo que se denomina el espectro electromagnético.

El espectro visible es un minúsculo intervalo que va desde la longitud de onda correspondiente al color violeta(aproximadamente 400 nanómetros) hasta la longitud de onda correspondiente al color rojo (aproximadamente 700 nm).

En telecomunicaciones se clasifican las ondas mediante un convenio internacional de frecuencias en función del empleo al que están destinadas como se observa en la tabla, además se debe considerar un tipo especial llamado microondas, que se sitúan su rango de frecuencias entre 1 GHz y 300 GHz, es decir, longitudes de onda de entre 30 centímetros a 1 milímetro, que tienen la capacidad de atravesar la ionosfera terrestre, permitiendo la comunicación satelital.

Clasificación de las ondas en telecomunicaciones

Sigla Rango Denominación Empleo

VLF

10 kHz a 30 kHz Muy baja frecuencia Radio gran alcance

LF

30 kHz a 300 kHz Baja frecuencia Radio, navegación

MF

300 kHz a 3 MHz Frecuencia media Radio de onda media

HF

3 MHz a 30 MHz Alta frecuencia Radio de onda corta

VHF

30 MHz a 300 MHz Muy alta frecuencia TV, radio

UHF

300 MHz a 3 GHz Ultra alta frecuencia TV, radar, telefonía móvil

SHF

3 GHz a 30 GHz Super alta frecuencia Radar

EHF

30 GHz a 300 GHz Extremadamente alta frecuencia Radar

LOS BENEFICIOS DE LA RADIACIÓN EN LA MEDICINA

LA MEDICINA es el área que más se ha beneficiado con las propiedades de la radiación. En este capítulo se explican algunas de las múltiples técnicas de diagnóstico y de tratamiento de enfermedades en que se usa radiación. Se describen las bases físicas de las radiografías, la medicina nuclear y la radioterapia, así como sus principales ventajas clínicas. Debido a que la cantidad de radiación necesaria para la mayoría de los exámenes de diagnóstico o los tratamientos de radioterapia es mucho mayor que la de los niveles naturales, es en los usos médicos donde mejor se aprecia la necesaria evaluación que se establece entre los riesgos y los beneficios inherentes a cualquier uso de la radiación.

RADIOGRAFÍAS

Comencemos refiriéndonos al uso más general de radiación en medicina, las radiografias, es decir el uso de los rayos X para exámenes de diagnóstico (conocido como radiodiagnóstico). Los rayos X son producidos en un tubo de vidrio al vacío que se encuentra en el interior del aparato metálico frente al cual se ubica al paciente. Después de que se produce la radiación, se transmite en línea recta y a la velocidad de la luz, penetra el cuerpo del paciente, lo atraviesa, sale por el otro lado, y se encuentra con una placa radiográfica (similar en muchos aspectos a una película fotográfica) donde quedará grabada una imagen anatómica del interior del cuerpo.

¿Cómo se forma la imagen del interior? Al atravesar el cuerpo del paciente, los rayos X son absorbidos más fuertemente por los huesos que por el tejido blando, de manera que al salir, aquellos rayos que en su camino encontraron huesos han sido debilitados (atenuados) más que aquellos que sólo debieron atravesar tejido sin hueso. La diferente atenuación queda registrada en la película radiográfica con diferentes niveles de iluminación y de sombra, consiguiéndose una imagen del interior.

Radiografía de tórax.

El mayor contraste (diferencia entre zonas claras y zonas oscuras) se obtiene entre la imagen de los huesos y la del tejido blando. Pero diferentes estructuras musculares no aparecen tan claramente diferenciadas y para visualizarlas se ha ideado introducir al cuerpo humano sustancias que causan fuerte atenuación de los rayos X. Es así como se logra observar todo el aparato digestivo, el urinario, el respiratorio y el cardiovascular. Al introducir sustancias radioopacas (el bario, entre otras) al torrente circulatorio, se pueden visualizar en la radiografía los vasos sanguíneos del riñón, cerebro, etcétera.

En los últimos cuarenta años se ha logrado obtener imágenes radiográficas de sólo un plano del cuerpo, ya sea transversal o longitudinal. A esta técnica se la llama tomografía. Si la imagen es de un plano transversal, es decir perpendicular al eje vertical del cuerpo, y su análisis se realiza con una computadora, la técnica se conoce como tomografía axial computarizada (TAC). Para conseguir estas imágenes se utiliza un tubo de rayos X giratorio que da una vuelta alrededor del paciente, en el plano de interés, emitiendo radiación que atraviesa el cuerpo desde muchísimos ángulos. La absorción del haz para cada ángulo se mide con detectores electrónicos que giran al otro lado del cuerpo, al unísono con el tubo emisor. Hace más de diez años, un examen TAC se tardaba un par de minutos; actualmente, los modelos más avanzados de tomógrafos lo efectuan en pocos segundos.

Con la técnica TAC bien empleada, es posible lograr imágenes de planos delgados del cuerpo (un centímetro) distinguiendo en ellos estructuras tan pequeñas como un par de milímetros. Este invento ha representado otro gran avance en el diagnóstico, pues permite estudiar con precisión la anatomía de una región, así como las alteraciones propias de las diferentes enfermedades. El médico cuenta ahora con un diagnóstico más preciso que le permite seleccionar el tratamiento más adecuado y brindar un pronóstico más acertado.

Imagen de tomografía axial computarizada que muestra un plano delgado del cerebro humano. Los óvalos en la parte superior son los ojos.

La dosis absorbida durante un examen tomográfico puede llegar a ser de algunos rads (más que toda la radiación

...

Descargar como (para miembros actualizados) txt (38 Kb)
Leer 23 páginas más »
Disponible sólo en Clubensayos.com