ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Sistema Electico


Enviado por   •  28 de Mayo de 2013  •  2.293 Palabras (10 Páginas)  •  287 Visitas

Página 1 de 10

Sistema eléctrico

Es una serie de elementos o componentes eléctricos o electrónicos, tales como resistencias, inductancias, condensadores, fuentes, y/o dispositivos electrónicos semiconductores, conectados eléctricamente entre sí con el propósito de generar, transportar o modificar señales electrónicas o eléctricas.

Un circuito eléctrico tiene que tener estas partes, o ser parte de ellas.

1. Por el tipo de señal: De corriente continua, de corriente alterna y mixta.

2. Por el tipo de régimen: Periódico, Transitorio y Permanente.

3. Por el tipo de componentes: Eléctricos: Resistivos, inductivos, capacitivos y mixtos. Electrónicos: digitales, analógicos y mixtos.

4. Por su configuración: En Serie y Paralelo.

Características de los Sistemas Eléctricos

1. Todo circuito eléctrico está formado por una fuente de energía (tomacorriente), conductores (cables), y un receptor que transforma la electricidad en luz (lámparas),en movimiento (motores), en calor (estufas).

2. Para que se produzca la transformación, es necesario que circule corriente por el circuito.

3. Este debe estar compuesto por elementos conductores, conectados a una fuente de tensión o voltaje y cerrado.

4. Los dispositivos que permiten abrir o cerrar circuitos se llaman interruptores o llaves.

Conceptos básicos de un Sistema Eléctrico

Conductor eléctrico: Cualquier material que ofrezca poca resistencia al flujo de electricidad se denomina conductor eléctrico. La diferencia entre un conductor y un aislante, que es un mal conductor de electricidad o de calor, es de grado más que de tipo, ya que todas las sustancias conducen electricidad en mayor o en menor medida. Un buen conductor de electricidad, como la plata o el cobre, puede tener una conductividad mil millones de veces superior a la de un buen aislante, como el vidrio o la mica. En los conductores sólidos la corriente eléctrica es transportada por el movimiento de los electrones; y en disoluciones y gases, lo hace por los iones.

Los materiales en los que los electrones están fuertemente ligados a los átomos se conocen como aislantes, no conductores o dieléctricos. Algunos ejemplos son el vidrio, la goma o la madera seca.

Generación de energía eléctrica

En general, la generación de energía eléctrica consiste en transformar alguna clase de energía química, mecánica, térmica o luminosa, entre otras, en energía eléctrica. Para la generación industrial se recurre a instalaciones denominadas centrales eléctricas, que ejecutan alguna de las transformaciones citadas. Estas constituyen el primer escalón del sistema de suministro eléctrico. La generación eléctrica se realiza, básicamente, mediante un generador; si bien estos no difieren entre sí en cuanto a su principio de funcionamiento, varían en función a la forma en que se accionan. Explicado de otro modo, difiere en qué fuente de energía primaria utiliza para convertir la energía contenida en ella, en energía eléctrica.

Desde que Nikola Tesla descubrió la corriente alterna y la forma de producirla en los alternadores, se ha llevado a cabo una inmensa actividad tecnológica para llevar la energía eléctrica a todos los lugares habitados del mundo, por lo que, junto a la construcción de grandes y variadas centrales eléctricas, se han construido sofisticadas redes de transporte y sistemas de distribución. Sin embargo, el aprovechamiento ha sido y sigue siendo muy desigual en todo el planeta. Así, los países industrializados o del Primer mundo son grandes consumidores de energía eléctrica, mientras que los países del llamado Tercer mundo apenas disfrutan de sus ventajas.

Leyes de los Sistemas Eléctricos

Ley de Ohm.

La corriente fluye por un circuito eléctrico siguiendo varias leyes definidas. La ley básica del flujo de la corriente es la ley de Ohm, así llamada en honor a su descubridor, el físico alemán Georg Ohm. Según la ley de Ohm, la cantidad de corriente que fluye por un circuito formado por resistencias puras es directamente proporcional a la fuerza electromotriz aplicada al circuito, e inversamente proporcional a la resistencia total del circuito. Esta ley suele expresarse mediante la fórmula I = V/R, siendo I la intensidad de corriente en amperios, V la fuerza electromotriz en voltios y R la resistencia en ohmios. La ley de Ohm se aplica a todos los circuitos eléctricos, tanto a los de corriente continua (CC) como a los de corriente alterna (CA), aunque para el análisis de circuitos complejos y circuitos de CA deben emplearse principios adicionales que incluyen inductancias y capacitancias. V = I x R

Dónde:

V: diferencia de potencial o voltaje aplicado a la resistencia, Voltios

I: corriente que atraviesa la resistencia, Amperios

R: resistencia, Ohmios

Leyes de Kirchhoff.

Si un circuito tiene un número de derivaciones interconectadas, es necesario aplicar otras dos leyes para obtener el flujo de corriente que recorre las distintas derivaciones. Estas leyes, descubiertas por el físico alemán Gustav Robert Kirchhoff, son conocidas como las leyes de Kirchhoff. La primera, la ley de los nudos, enuncia que en cualquier unión en un circuito a través del cual fluye una corriente constante, la suma de las intensidades que llegan a un nudo es igual a la suma de las intensidades que salen del mismo. La segunda ley, la ley de las mallas afirma que, comenzando por cualquier punto de una red y siguiendo cualquier trayecto cerrado de vuelta al punto inicial, la suma neta de las fuerzas electromotrices halladas será igual a la suma neta de los productos de las resistencias halladas y de las intensidades que fluyen a través de ellas. Esta segunda ley es sencillamente una ampliación de la ley de Ohm.

a). Reglas de los nodos: En todo nodo se cumple:

Las corrientes que entran a un nodo son iguales a las corrientes que salen.

b). Regla de las mallas: En toda malla se cumple:

La sumatoria de las fuerzas electromotrices en una malla menos la sumatoria de las caídas de potencial en los resistores presentes es igual a cero.

C). Regla de signos:

1. Al pasar a través de una pila del terminal positivo al negativo se considera positivo la f.e.m.

2. Al pasar a través de una pila del terminal negativo al positivo se considera negativa la f.e.m.

3. Al pasar a través de un resistor de mayor a menor potencial se considerará la existencia de una caída.

4. Al pasar a través de un resistor

...

Descargar como (para miembros actualizados)  txt (14 Kb)  
Leer 9 páginas más »
Disponible sólo en Clubensayos.com