ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Temas Variados


Enviado por   •  2 de Diciembre de 2013  •  3.267 Palabras (14 Páginas)  •  200 Visitas

Página 1 de 14

La primera ley de la termodinámica, es la aplicación del principio de conservación de energía, a los procesos de calor y termodinámico:

La primera ley hace uso de los conceptos claves de energía interna, calor y trabajo sobre un sistema. Usa extensamente él estudió de los motores térmicos. La unidad estándar de todas estas cantidades es el julio, aunque algunas veces se expresan en calorías o BTU. En los textos de química es típico escribir la primera ley como ΔU=Q+W. Por supuesto que es la misma ley,-la expresión termodinámica del principio de conversación de energía-. Exactamente se define W como el trabajo realizado sobre el sistema en vez de trabajo realizado por el sistema. En un contexto físico el escenario común es el de añadir calor a un volumen de gas y usar la expansión de ese gas para realizar trabajo como en el caso del empuje de un pistón en un motor de combustión interna. En el contexto de procesos y reacciones químicas suelen ser más comunes encontrase con situaciones donde el trabajo se realiza sobre el sistema más que el realizado por el sistema.

La energía interna se define como la energía asociada con el movimiento aleatorio y desordenado de las moléculas. Está en una escala separada de la energía macroscópica ordenada, que se asocia con los objetos en movimiento. Se refiere a la energía microscópica invisible de la escala atómica y molecular. Por ejemplo un vaso de agua a temperatura ambiente sobre una mesa no tiene energía aparente ya sea potencial o cinética. Pero en escala microscópica es un hervidero de moléculas de alta velocidad que viajan a cientos de metros por segundo. Si el agua se tirase por la habitación esta energía microscópica no sería cambiada necesariamente por la súper imposición de un movimiento ordenada a gran escala sobre el agua como un todo.

El calor está definido como la forma de energía que se transfiere entre diferentes cuerpos o diferentes zonas de un mismo cuerpo que se encuentran a distintas temperaturas, sin embargo en termodinámica generalmente el término calor significa simplemente transferencia de energía. Este flujo de energía siempre ocurre desde el cuerpo de mayor temperatura hacia el cuerpo de menor temperatura, ocurriendo la transferencia hasta que ambos cuerpos se encuentren en equilibrio térmico (ejemplo: una bebida fría dejada en una habitación se entibia).

La energía puede ser transferida por diferentes mecanismos de transferencia, estos son la radiación, la conducción y la convección, aunque en la mayoría de los procesos reales todos se encuentran presentes en mayor o menor grado. Cabe resaltar que los cuerpos no tienen calor, sino energía térmica. La energía existe en varias formas. En este caso nos enfocamos en el calor, que es el proceso mediante el cual la energía se puede transferir de un sistema a otro como resultado de la diferencia de temperatura.

En mecánica clásica, el trabajo que realiza una fuerza sobre un cuerpo equivale a la energía necesaria para desplazar este cuerpo. El trabajo es una magnitud física escalar que se representa con la letra (del inglés Work) y se expresa en unidades de energía, esto es en julios o joules (J) en el Sistema Internacional de Unidades.

Ya que por definición el trabajo es un tránsito de energía, nunca se refiere a él como incremento de trabajo, ni se simboliza como ΔW.

Matemáticamente se expresa como:

Donde es el módulo de la fuerza, es el desplazamiento y es el ángulo que forman entre sí el vector fuerza y el vector desplazamiento (véase dibujo).

Cuando el vector fuerza es perpendicular al vector desplazamiento del cuerpo sobre el que se aplica, dicha fuerza no realiza trabajo alguno. Asimismo, si no hay desplazamiento, el trabajo también será nulo.

El trabajo en la Mecánica

Consideremos una partícula sobre la que actúa una fuerza , función de la posición de la partícula en el espacio, esto es y sea un desplazamiento elemental (infinitesimal) experimentado por la partícula durante un intervalo de tiempo . Llamamos trabajo elemental, , de la fuerza durante el desplazamiento elemental al producto escalar ; esto es,

Si representamos por la longitud de arco (medido sobre la trayectoria de la partícula) en el desplazamiento elemental, esto es , entonces el vector tangente a la trayectoria viene dado por y podemos escribir la expresión anterior en la forma

donde representa el ángulo determinado por los vectores y y es la componente de la fuerza F en la dirección del desplazamiento elemental .

El trabajo realizado por la fuerza durante un desplazamiento elemental de la partícula sobre la que está aplicada es una magnitud escalar, que podrá ser positiva, nula o negativa, según que el ángulo sea agudo, recto u obtuso.

Si la partícula P recorre una cierta trayectoria en el espacio, su desplazamiento total entre dos posiciones A y B puede considerarse como el resultado de sumar infinitos desplazamientos elementales y el trabajo total realizado por la fuerza en ese desplazamiento será la suma de todos esos trabajos elementales; o sea

Esto es, el trabajo viene dado por la integral curvilínea de a lo largo de la curva que une los dos puntos; en otras palabras, por la circulación de sobre la curva entre los puntos A y B. Así pues, el trabajo es una magnitud física escalar que dependerá en general de la trayectoria que una los puntos A y B, a no ser que la fuerza sea conservativa, en cuyo caso el trabajo resultará ser independiente del camino seguido para ir del punto A al punto B, siendo nulo en una trayectoria cerrada. Así, podemos afirmar que el trabajo no es una variable de estado.

En el caso particular de que la fuerza aplicada a la partícula sea constante (en módulo, dirección y sentido), se tiene que

Es decir, el trabajo realizado por una fuerza constante viene expresado por el producto escalar de la fuerza por el vector desplazamiento total entre la posición inicial y la final.

Si sobre una partícula actúan varias fuerzas y queremos calcular el trabajo total realizado sobre esta ella, entonces representará al vector resultante de todas las fuerzas aplicadas.

El trabajo

...

Descargar como (para miembros actualizados)  txt (20.1 Kb)  
Leer 13 páginas más »
Disponible sólo en Clubensayos.com