ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Teorema De Roller

Ensayos : Teorema De Roller. Ensayos de Calidad, Tareas, Monografias - busque más de 2.328.000+ documentos.

Enviado por   •  11 de Octubre de 2013  •  1.270 Palabras (6 Páginas)  •  224 Visitas

Página 1 de 6

TEOREMA DE ROLLE

El teorema de Rolle dice que:

Si f es una función continua en [a, b] y derivable en (a, b), tal que f(a) = f(b), hay algún punto c (a, b) en el quef'(c) = 0.

La interpretación gráfica del teorema de Rolle nos dice que hay un punto en el que la tangente es paralela al eje de abscisas.

Ejemplos

1. ¿Es aplicable el teorema de Rolle a la función f(x) = |x − 1| en el intervalo [0, 2]?

La función es continua en [0, 2].

No es aplicable el teorema de Rolle porque la solución no es derivable en el punto x = 1.

2. Estudiar si la función f(x) = x − x3 satisface las condiciones del teorema de Rolle en los intervalos [−1, 0] y [0, 1]. en caso afirmativo determinar los valores de c.

f(x) es una función continua en los intervalos [−1, 0] y [0, 1] y derivable en los intervalos abiertos (−1, 0) y (0, 1) por ser una función polinómica.

Además se cumple que:

f(−1) = f(0) = f(1) = 0

Por tanto es aplicable el teorema de Rolle.

3.¿Satisface la función f(x) = 1 − x las condiciones del teorema de Rolle en el intervalo [−1, 1]?

La función es continua en el intervalo [−1, 1] y derivable en (−1, 1) por ser una función polinómica.

No cumple teorema de Rolle porque f(−1) ≠ f(1).

TEOREMA DE LANGRANGE

En cálculo diferencial, el teorema de valor medio (de Lagrange), teorema de los incrementos finitos, teorema de Bonnet-Lagrange o teoría del punto medio es una propiedad de las funciones derivables en un intervalo. Algunos matemáticos consideran que este teorema es el más importante de cálculo (ver también el teorema fundamental del cálculo integral). El teorema no se usa para resolver problemas matemáticos; más bien, se usa normalmente para demostrar otros teoremas. El teorema de valor medio puede usarse para demostrar el teorema de Taylor ya que es un caso especial.

Enunciado para una variable

Para una función que cumpla la hipótesis de ser definida y continua [a, b] y derivable en el intervalo abierto (a, b) entonces existe al menos algún punto c en el intervalo (a, b) en que la pendiente de la curva es igual que la pendiente media de la curva en el intervalo cerrado [a, b].

En esencia el teorema dice que dada cualquier función f continua en el intervalo [a, b] y diferenciable en el intervalo abierto (a, b) entonces existe al menos algún punto c en el intervalo (a, b) tal que la tangente a la curva en c es paralela a la recta secante que une los puntos (a, f(a)) y (b, f(b)). Es decir:

El teorema del valor medio de Lagrange de hecho es una generalización del teorema de Rolle que dice que si una función es definida y continua [a, b], diferenciable en el intervalo abierto (a, b), y toma valores iguales en los extremos del intervalo – en otras palabras, f(a) = f(b) – entonces existe al menos algún punto c en el intervalo (a, b) tal que la tangente a la curva en c es horizontal, es decir f'(c) = 0.

Demostración

El conocimiento del significado de la derivada de una función en un punto, y de la ecuación punto-pendiente de una recta, permiten deducir que la ecuación de la recta tangente en un punto de la curva es:

Donde los pares de puntos y son una pareja cualquiera de puntos de la curva. Vamos a demostrar que, una vez conocida una pareja de puntos de una curva continua y derivable, existe un punto c contenido en el intervalo (a, b) tal que la pendiente en dicho punto es paralela a la recta que une los puntos (a, f(a)) y (b, f(b)). Definimos una función:

...

Descargar como (para miembros actualizados)  txt (6.7 Kb)  
Leer 5 páginas más »
Generador de citas

(2013, 10). Teorema De Roller. ClubEnsayos.com. Recuperado 10, 2013, de https://www.clubensayos.com/Temas-Variados/Teorema-De-Roller/1128930.html

"Teorema De Roller" ClubEnsayos.com. 10 2013. 2013. 10 2013 <https://www.clubensayos.com/Temas-Variados/Teorema-De-Roller/1128930.html>.

"Teorema De Roller." ClubEnsayos.com. ClubEnsayos.com, 10 2013. Web. 10 2013. <https://www.clubensayos.com/Temas-Variados/Teorema-De-Roller/1128930.html>.

"Teorema De Roller." ClubEnsayos.com. 10, 2013. consultado el 10, 2013. https://www.clubensayos.com/Temas-Variados/Teorema-De-Roller/1128930.html.