ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Venezuela En 1830

andres09128017 de Noviembre de 2013

3.468 Palabras (14 Páginas)268 Visitas

Página 1 de 14

Hielo

Saltar a: navegación, búsqueda

Para otros usos de este término, véase Hielo (desambiguación).

Bloque natural de hielo de cuatro toneladas en una playa islandesa.

El «hielo» es el agua congelada. Es uno de los tres estados naturales del agua. La forma más fácil de reconocerlo es por su temperatura, y por su color blanco níveo; además es muy frío al tacto. El agua pura se congela a 0 °C cuando se halla sometido a una atmósfera de presión.

Índice

1 Volumen y densidad del agua al solidificarse

2 Estructura cristalina

3 El hielo como mineral

4 Tipos de hielo

5 Fusión eutéctica

6 Descenso crioscópico

7 El color del hielo

8 Otras acepciones

9 Acción erosiva

10 Formaciones de hielo sin agua

11 Véase también

12 Referencias

13 Enlaces externos

Volumen y densidad del agua al solidificarse

El agua, junto con el galio, bismuto, ácido acético, antimonio y el silicio, es una de las pocas sustancias que al congelarse aumenta de volumen (es decir, que disminuye su densidad); se expande al congelarse. Esta propiedad evita que los océanos de las regiones polares de la Tierra se congelen en todo su volumen, puesto que el hielo flota en el agua y es lo que queda expuesto a los cambios de temperatura de la atmósfera. La densidad típica del hielo a 0 °C suele tomarse como 916,8 kg/m3 o como 0,9168 g/cm.3.

Estructura cristalina

Cristales de hielo, estudiados por Wilson Bentley en 1902.

El hielo presenta 12 estructuras o fases cristalinas diferentes. A las presiones habituales en el medio terrestre (en el entorno de la presión atmosférica), la fase estable suele denotarse como fase I según la terminología de Tamman. Dicha fase I presenta dos variantes relacionadas entre sí: el hielo hexagonal, denotado Ih, y el hielo cúbico, Ic. El hielo hexagonal es la fase más común, y la mejor conocida: su estructura hexagonal puede verse reflejada en los cristales de hielo, que siempre tienen una base hexagonal. El hielo cúbico Ic se obtiene por deposición de vapor de agua a temperaturas inferiores a -130 °C, por lo que no es tan común; aun así, a unos -38 °C y 200MPa de presión, situación esperable en los casquetes polares, ambas estructuras están en equilibrio termodinámico.

El hielo Ih presenta una estructura hexagonal en la que cada átomo de oxígeno de una molécula de agua tiene otros cuatro átomos de hidrógeno como sus vecinos más próximos, situados en los vértices de un tetraedro regular cuyo centro es el átomo de oxígeno de interés. Esta unidad tetraédrica es común a todas las demás fases del hielo, y se debe al hecho de que el ángulo entre átomos de hidrógeno en la molécula de agua libre H-O-H es de 104,52º, en vez de 90º. El ángulo tetraédrico entre O-O-O es de 109,47º. Para temperaturas de interés terrestre, la distancia entre átomos de oxígeno O-O es de 0,276nm y entre O-H de 0,0985nm. La unión entre átomos intramoleculares es de enlaces covalentes simples y por tanto muy estables, mientras que la unión intermolecular se produce por enlaces de puente hidrógeno relativamente débiles, lo cual explica la relativamente baja temperatura de fusión del hielo. Los parámetros de red más relevantes son el lado hexagonal a=0,451nm, y la altura del prisma hexagonal c=0,7357nm. Estos valores pueden varia ligeramente con la temperatura, pero la relación entre ambos, c/a=1,628, permanece prácticamente estable y muy cercano al valor óptimo de c/a=1,633, teorizado para esferas sólidas en contacto formando la misma estructura hexagonal. La estabilidad del parámetro c/a explica el hecho de que la expansión térmica del hielo se produzca de manera isotrópica. Por su parte, el hecho de que el hielo Ih tenga una estructura hexagonal explica la anisotropía usualmente observada en sus propiedades mecánicas: el módulo de Young, por ejemplo, que se sitúa en el entorno de E=9-10GPa para cristales puros, presenta isotropía radial, y varía considerablemente según la dirección de la deformación; la resistencia mecánica, situada en el entorno de 1MPa para cristales puros en la dirección basal, puede alcanzar los 7MPa en ciertas configuraciones. La presencia de impurezas en la red es práula, salvo para algunas sustancias puntuales como el fluoruro de amonio, NH4F. Los defectos cristalinos pueden ser cuatro: vacantes, intersticiales, iónicos o de Bjerrum, los dos últimos siendo exclusivos del hielo y estando relacionados con la rotación de hidrógenos de una molécula de agua en la red.

En todo caso, la estructura Ih del hielo es poco compacta –lo cual explica su menor densidad con respecto a la fase líquida– sobre todo si se compara con estructuras análogas en otros materiales cristalinos como los metales. El factor de empaquetamiento es de 0,34, muy inferior al 0,74 típico de los metales. Ello se explica por la repulsión de átomos de hidrógeno y oxígeno conforme se compacta la red. De hecho, esta repulsión lleva a que, cuando la presión sobre la red hexagonal es lo suficientemente elevada, esta estructura deje de ser estable y aparezcan otras que la sustituyan.

En efecto, el resto de fases cristalinas se producen a presiones mucho más altas, y hasta 1900 eran desconocidas. De hecho, no existen en la Tierra, pues los casquetes polares terrestres son demasiado finos como para permitir la aparición de fases estables distintas al hielo Ih. Sin embargo, la situación es distinta en las grandes lunas heladas del sistema solar como Europa o Tritón, donde se postula que las presiones en el núcleo son lo suficientemente elevadas como para asegurar la aparición de fases estables distintas a la Ih, que a dichas presiones sería inestable. Las fases cristalinas de alta presión mejor conocidas son las fases II y III; en laboratorio sólo se han estudiado las fases II, III, V y VI,1 mientras que el resto permanecen básicamente desconocidas.

La estructura del hielo II es romboidal. Este hielo se forma a unos 238K para presiones de 283 atmósferas, y su densidad es de 1193kg/m³ por ser una estructura mucho más compacta. El hielo III es tetragonal, y aparece a unos 246K y 276 atm, siendo su densidad de 1166kg/m³. El hielo V es monoclínico, aparreciendo a 237,5K y 480 atm, con una densidad de 1267kg/m³. El hielo VI es tetragonal, y aparece a 237,5K para 777atm, con una densidad de 1360kg/m³. Todas estas fases son esencialmente frágiles, aunque presentan gran tendencia a la fluencia en el tiempo (creep) y cierto comportamiento viscoelástico.

Aunque inicialmente se creía que eran fases nanocristalinas, aparte de las fases cristalinas arriba mentadas, el hielo puede aparecer en dos fases amorfas (vítreas): el hielo amorfo de baja densidad (940kg/m³ a -196 °C y 1atm) y el hielo amorfo de alta densidad (1170kg/m³, mismas condiciones. La formación del hielo amorfo es complicada, y se relaciona con el tiempo de solidificación dado al agua; puede formarse por condensación de vapor por debajo de -160 °C, por colapso de la estructura Ih bajo elevada presión por debajo de -196 °C,... En todo caso, salvo en ciertas situaciones muy concretas, no son fases comunes en la Tierra .

El hielo como mineral

Hielo mineral

General

Categoría Minerales óxidos

Clase 4.AA.05 (Strunz)

Fórmula química H2O

Propiedades físicas

Color Incoloro a blanco

Raya Blanca

Lustre Vítreo

Transparencia Transparente

Sistema cristalino Hexagonal

Fractura Concoidea

Dureza 1,5 (Mohs)

Tenacidad Quebradizo

Densidad 0,917 g/cm3

Magnetismo Diamagnético

Variedades principales

En mineralogía es aceptado como mineral válido por la Asociación Mineralógica Internacional, pues es un sólido estable a temperaturas de menos de 0 °C. Se clasifica en el grupo 4 de minerales óxidos al ser un óxido de hidrógeno, normalmente con abundantes impurezas.2

Tipos de hielo

En el hielo, como en la mayoría de los sólidos, las moléculas se acomodan en una formación ordenada. Sin embargo, dependiendo de las condiciones de presión y temperatura, es posible que adopten diferentes formas de ordenarse. A partir de 1900, Gustave Tamman y posteriormente en 1912 Percy Bridgman hicieron experimentos sobre el hielo aplicándole diferentes presiones y temperaturas, y obtuvieron hielos diferentes con mayores densidades a la normal (posteriormente se encontraron muchos más tipos de hielo). Todas estas formas de hielo tienen estructuras más compactas (diferentes formas de un elemento existentes en el mismo estado físico), o sea que se forman varias modificaciones alotrópicas o alótropos.

Los tipos de hielo conocidos son los siguientes:

Hielo Ih (Todo el hielo que se forma en la biosfera terrestre es hielo del tipo Ih, a excepción de una pequeña cantidad de hielo Ic. Los cristales de hielo tienen forma hexagonal).

Hielo Ic (baja temperatura, cúbica centrada en las caras, densidad aproximadamente 900 kg/m3).

Hielo II (baja temperatura, ortorrómbica centrado, densidad aproximadamente 1.200 kg/m3).

Hielo III ó Iii (baja temperatura, tetragonal, densidad aproximadamente 1.100 kg/m3).

Hielo V (alta presión, baja temperatura, monoclínica de base centrada, densidad aproximadamente 1.200 kg/m3).

Hielo VI (alta presión, baja temperatura, tetragonal, densidad aproximadamente 1.300 kg/m3).

Hielo

...

Descargar como (para miembros actualizados) txt (20 Kb)
Leer 13 páginas más »
Disponible sólo en Clubensayos.com