ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Biomoleculas


Enviado por   •  22 de Febrero de 2014  •  1.736 Palabras (7 Páginas)  •  240 Visitas

Página 1 de 7

BIOMOLECULAS

Los organismos vivos producen elementos que le permiten subsistir y reproducirse en el tiempo, y estas moléculas son producidas constantemente hasta el momento de la muerte del ser vivo. Es esto lo que son las biomoléculas: cualquier tipo de molécula orgánica producida por un organismo vivo y se clasifican en:

Biomoléculas inorgánicas: Son las que no son producidas por los seres vivos, pero que son fundamentales para su subsistencia. En este grupo encontramos el agua, los gases y las sales inorgánicas.

Biomoléculas orgánicas: Son moléculas con una estructura a base de carbono y son sintetizadas sólo por seres vivos. Podemos dividirlas en cinco grandes grupos.

• Lípidos. Están compuestos por carbono e hidrógeno, y en menor medida por oxígeno. Su característica es que son insolubles en agua. Son lo que coloquialmente se conoce como grasas.

• Glúcidos. Son los carbohidratos o hidratos de carbono. Están compuestos por carbono, hidrógeno y oxígeno, y sí son solubles en agua. Constituyen la forma más primitiva de almacenamiento energético.

• Proteínas. Están compuestas por cadenas lineales de aminoácidos, y son el tipo de biomoléculas más diversa que existe. Tienen varias funciones dependiendo del tipo de proteína del que estemos hablando.

• Ácido nucléico. Son el ADN (ácido desoxirribonucleico) y ARN (ácido ribonucleico). Son macromoléculas formadas por nucleótidos unidos por enlaces.

• Vitaminas. Las vitaminas también lo son. Estas son usadas en algunas reacciones enzimáticas como cofactores.

LAS PROTEINAS

La palabra proteína proviene del griego protop (lo primero, lo principal, lo más importante). La proteínas son las responsables de la formación y reparación de los tejidos, interviniendo en el desarrollo corporal e intelectual.

Las proteínas son biopolímeros (macromoléculas orgánicas), de elevado peso molecular, constituidas básicamente por carbono (C), hidrógeno (H), oxígeno (O) y nitrógeno (N); aunque pueden contener también azufre (S) y fósforo (P) y, en menor proporción, hierro (Fe), cobre (Cu), magnesio (Mg), yodo (Y), entre otros elementos.

Estos elementos químicos se agrupan para formar unidades estructurales (monómeros) llamados aminoácidos (aa), a los cuales se consideran como los "ladrillos de los edificios moleculares proteicos". Estos edificios macromoleculares se construyen y desmoronan con gran facilidad dentro de las células, y a ello debe precisamente la materia viva su capacidad de crecimiento, reparación y regulación.

La unión de un bajo número de aminoácidos da lugar a un péptido; si el número de aa que forma la molécula no es mayor de 10, se denomina oligopéptido; si es superior a 10, se llama polipéptido y si el número es superior a 50 aa, se habla ya de proteína.

Son constituyentes químicos fundamentales e imprescindibles en la materia viva porque:

a) son los "instrumentos moleculares" mediante los cuales se expresa la información genética; es decir, las proteínas ejecutan las órdenes dictadas por los ácidos nucléicos.

b) son sustancias "plásticas" para los seres vivos, es decir, materiales de construcción y reparación de sus propias estructuras celulares. Sólo excepcionalmente sirven como fuente de energía.

c) muchas tienen "actividad biológica" (transporte, regulación, defensa, reserva, etc...). Esta característica diferencia a las proteínas de otros principios inmediatos como glúcidos y lípidos que se encuentran en las células como simples sustancias inertes.

Se clasifican, de forma general, en Holoproteínas y Heteroproteínas según estén formadas, respectivamente, sólo por aminoácidos o bien por aminoácidos más otras moléculas o elementos adicionales no aminoacídicos.

La organización de una proteína viene definida por cuatro niveles estructurales denominados: estructura primaria, estructura secundaria, estructura terciaria y estructura cuaternaria. Cada una de estas estructuras informa de la disposición de la anterior en el espacio.

LOS LIPIDOS

Los lípidos, un grupo heterogéneo de sustancias orgánicas que se encuentran en los organismos vivos, son biomoléculas orgánicas formadas básicamente por carbono e hidrógeno y generalmente también oxígeno; pero en porcentajes mucho más bajos. Además pueden contener también fósforo, nitrógeno y azufre.

En el uso coloquial, a los lípidos se les llama incorrectamente grasas, aunque las grasas son sólo un tipo de lípidos procedentes de animales.

Los lípidos se distinguen de otros tipos de compuestos orgánicos porque no son solubles en agua (hidrosolubles) sino en disolventes orgánicos (alcohol, éter).

Los lípidos forman un grupo de sustancias de estructura química muy heterogénea, siendo la clasificación más aceptada la siguiente:

Lípidos saponificables: Los lípidos saponificables son los lípidos que contienen ácidos grasos en su molécula y producen reacciones químicas de saponificación. A su vez los lípidos saponificables se dividen en:

Lípidos simples: Son aquellos lípidos que sólo contienen carbono, hidrógeno y oxígeno. Estos lípidos simples se subdividen a su vez en: Acilglicéridos o grasas (cuando los acilglicéridos son sólidos se les llama grasas y cuando son líquidos a temperatura ambiente se llaman aceites) y Céridos o ceras.

Lípidos complejos: Son los lípidos que además de contener en su molécula carbono, hidrógeno y oxígeno, también contienen otros elementos como nitrógeno, fósforo, azufre u otra biomoléculas como un glúcido. A los lípidos complejos también se les llama lípidos de membrana pues son las principales moléculas que forman las membranas celulares: Fosfolípidos y Glicolípidos.

Lípidos insaponificables: Son los lípidos que no poseen ácidos grasos en su estructura y no producen reacciones de saponificación. Entre los lípidos insaponificables encontramos a: Terpenos, Esteroides y Prostaglandinas.

Al igual que los glúcidos, los lípidos se utilizan en su mayor parte para aportar energía al organismo, pero también son imprescindibles para otras funciones como la absorción de algunas vitaminas (las liposolubles), la síntesis de hormonas y como material aislante y de relleno de órganos internos. También forman parte de las membranas celulares y de las vainas que envuelven los nervios. Sin duda el uso industrial de los lípidos es en la fabricación de aceites, lubricantes, grasas, ceras, etc., ya sean para consumo humano o bien para uso industrial. También, a nivel de consumo humano se les utilizan en la fabricación de medicamentos y complementos vitamínicos: los aceites vegetales son ricos en vitamina E.

CARBOHIDRATOS

Los Carbohidratos, también llamados hidratos de carbono, glúcidos o azúcares son la fuente más abundante y económica de energía alimentaria de nuestra dieta.

Están presentes tanto en los alimentos de origen animal como la leche y sus derivados como en los de origen vegetal; legumbres, cereales, harinas, verduras y frutas.

Dependiendo de su composición, los carbohidratos pueden clasificarse en:

Simples

• Monosacáridos: glucosa o fructosa

• Disacáridos: formados por la unión de dos monosacáridos iguales o distintos: lactosa, maltosa, sacarosa, etc.

• Oligosacáridos: polímeros de hasta 20 unidades de monosacáridos.

Complejos

• Polisacáridos: están formados por la unión de más de 20 monosacáridos simples.

• Función de reserva: almidón, glucógeno y dextranos.

• Función estructural: celulosa y xilanos.

La principal función de los carbohidratos es suministrarle energía al cuerpo, especialmente al cerebro y al sistema nervioso. Una enzima llamada amilasa ayuda a descomponer los carbohidratos en glucosa (azúcar en la sangre), la cual se usa como fuente de energía por parte del cuerpo.

• Obtener demasiados carbohidratos puede llevar a un incremento en las calorías totales, causando obesidad.

• El hecho de no obtener suficientes carbohidratos puede producir falta de calorías (desnutrición) o ingesta excesiva de grasas para reponer las calorías.

La fibra vegetal (presente en los carbohidratos complejos) presenta infinidad de beneficios, ayuda a la regulación del colesterol, previene el cáncer de colon, regula el tránsito intestinal y combate las subidas de glucosa en sangre (muy beneficiosa para los diabéticos), aumenta el volumen de las heces y aumenta la sensación de saciedad, esto puede servirnos de ayuda en las dietas de control de peso.

ACIDOS NUCLEICOS

Son compuestos orgánicos de elevado peso molecular, formados por carbono, hidrógeno, oxígeno, nitrógeno y fósforo. Cumplen la importante función de sintetizar las proteínas específicas de las células y de almacenar, duplicar y transmitir los caracteres hereditarios. Los ácidos nucléicos, representados por el ADN (ácido desoxirribonucleico) y por el ARN (ácido ribonucleico), son macromoléculas formadas por la unión de moléculas más pequeñas llamadas nucleótidos.

Los ácidos nucléicos son polímeros formados por nucleótidos.

Nucleótidos: Son moléculas compuestas por grupos fosfato, un monosacáridos de cinco carbonos (pentosa) y una base nitrogenada. Además de constituir los ácidos nucléicos forman parte de coenzimas y de moléculas que contienen energía. Los nucleótidos tienen importantes funciones, entre ellas el transporte de átomos en la cadena respiratoria mitocondrial, intervenir en el proceso de fotosíntesis, transporte de energía principalmente en forma de adenosin trifosfato (ATP) y transmisión de los caracteres hereditarios.

En la naturaleza existen solo dos tipos de ácidos nucléicos: El ADN (ácido desoxirribonucleico) y el ARN (ácido ribonucleico) y están presentes en todas las células.

Los ácidos nucléicos tienen al menos dos funciones: trasmitir las características hereditarias de una generación a la siguiente y dirigir la síntesis de proteínas específicas.

Tanto la molécula de ARN como la molécula de ADN tienen una estructura de forma helicoidal.

El ADN y el ARN se diferencian porque:

- el peso molecular del ADN es generalmente mayor que el del ARN

- el azúcar del ARN es ribosa, y el del ADN es desoxirribosa

- el ARN contiene la base nitrogenada uracilo, mientras que el ADN presenta timina

La configuración espacial del ADN es la de un doble helicoide, mientras que el ARN es un polinucleótido lineal, que ocasionalmente puede presentar apareamientos intracatenarios

VITAMINAS

Son compuestos heterogéneos imprescindibles para la vida, que al ingerirlos de forma equilibrada y en dosis esenciales promueven el correcto funcionamiento fisiológico. La mayoría de las vitaminas esenciales no pueden ser sintetizadas (elaboradas) por el organismo, por lo que éste no puede obtenerlas más que a través de la ingesta equilibrada de vitaminas contenidas en los alimentos naturales. Las vitaminas son nutrientes que junto con otros elementos nutricionales actúan como catalizadoras de todos los procesos fisiológicos (directa e indirectamente).

Las vitaminas son precursoras de coenzimas, (aunque no son propiamente enzimas) grupos prostéticos de las enzimas. Esto significa, que la molécula de la vitamina, con un pequeño cambio en su estructura, pasa a ser la molécula activa, sea ésta coenzima o no.

Intervienen como catalizador en las reacciones bioquímicas provocando la liberación de energía. En otras palabras, la función de las vitaminas es la de facilitar la transformación que siguen los sustratos a través de las vías metabólicas.

Originalmente se creía que existían 15 vitaminas del grupo B, que con el paso del tiempo y las investigaciones, se demostraron como tan solo seis: Tiamina (B1), Riboflavina (B2), Niacina (B3), Piridoxina (B6), folatos (ácido fólico - algunos lo llaman B9) y la cobalamina (B12).

Los compuestos que se creían vitaminas son: Adenina (B4), ácido pantoténico (B5), Colina (B7), Biotina (B8), Carnitina (B11), ácidoorótico (B13), xantopterina (B14) y ácido pangámico B15)

Todos estos compuestos son hidrosolubles, por tanto de simple asimilación, metabolización y eliminación. De las vitaminas consideradas efectivamente como del grupo B, todas están presentes en alimentos vegetales y animales, excepto la cobalamina ausente en alimentos vegetales.

Todas las vitaminas B están intimamente relacionadas entre sí, por lo que es mayormente eficaz la presencia de todo el complejo y no algunas en forma aislada.

...

Descargar como  txt (12.3 Kb)  
Leer 6 páginas más »
txt