Fisica Electro
Fotuz20 de Octubre de 2014
3.190 Palabras (13 Páginas)313 Visitas
FASE 1 Solucione los siguientes cuestionamientos relacionados con los Semiconductores. Por favor consulte otras fuentes adicionales al Módulo del curso de Física Electrónica. 1. Enuncie las principales características y diferencias existentes entre un material aislante, un conductor y un semiconductor. De algunos ejemplos de cada grupo. Teoría De Bandas Definición: Los electrones pueden ocupar un número discreto de niveles de energía, pueden tener solamente aquellas energías que caen dentro de las bandas permitidas. La banda donde se mueven normalmente los electrones de valencia se conoce como banda de valencia, y los electrones que se mueven libremente y conducen la corriente se mueven en la banda de conducción. Conductores: Para los conductores la banda de conducción y la de valencia se traslapan, en este caso, el traslape favorece ya que así los electrones se mueven por toda la banda de conducción. No existe banda prohibida, estando solapadas las bandas de valencia y conducción. Esto hace que siempre haya electrones en la banda de conducción, por lo que su conductividad es muy elevada. Esta conductividad disminuye lentamente al aumentar la temperatura, por efecto de las vibraciones de los átomos de la red cristalina. Un ejemplo son todos los metales. Aislantes: En este caso las bandas de valencia y conducción se encuentran muy bien separadas lo cual casi impide que los electrones se muevan con mayor libertad y facilidad. La magnitud de la banda prohibida es muy grande (6 eV), de forma que todos los electrones del cristal se encuentran en la banda de valencia incluso a altas temperaturas por lo que, al no existir portadores de carga libres, la conductividad eléctrica del cristal es nula. Un ejemplo es el diamante, lana de roca, lana de vidrio, poliestireno expandido, porexpan, agramiza, etc. Semiconductores: En el caso de los semiconductores estas dos bandas se encuentran separadas por una brecha muy estrecha y esta pequeña separación hace que sea relativamente fácil moverse, no con una gran libertad pero no les hace imposible el movimiento. La magnitud de la banda prohibida es pequeña ( 1 eV ), de forma que a bajas temperaturas son aislantes, pero conforme aumenta la temperatura algunos electrones van alcanzando niveles de energía dentro de la banda de conducción, aumentando la conductividad. Otra forma de aumentar la conductividad es añadiendo impurezas que habiliten niveles de energía dentro de la banda prohibida. El germanio y el silicio son semiconductores. Tipos De Semiconductores Primero que nada tenemos que definir claramente lo que es un semiconductor el cual no es más que un material ya sea sólido o liquido con una resistividad intermedia entre la de un conductor y la de un aislador. Gracias a los semiconductores la tecnología del estado sólido a sido reemplazada por completo a los tubos al vació, estos materiales están formados por electrones externos de un átomo, y los cuales son conocidos como electrones de valencia. Existen dos tipos de semiconductores los de tipo N y los de tipo P y la unión de estos dos formando así un tercero llamado unión PN.
Semiconductor Tipo N: Este tipo de semiconductor trata de emparejar los materiales con respecto a sus cargas y lo realiza con enlace de impurezas a ambos materiales. Por lo tanto, la impureza puede donar cargas con carga negativa al cristal, lo cual nos explica el nombre de tipo N (por negativo). El material semiconductor de tipo N comercial se fabrica añadiendo a un cristal de silicio pequeñas cantidades controladas de una impureza seleccionada. A estas impurezas también se les llama contaminantes, claro así se le llaman a las impurezas que se agregan intencionalmente. Los contaminantes de tipo N más comunes son el fósforo, arsénico y antimonio. A estos semiconductores se les conoce también como donadores, y como este nombre lo indica estos semiconductores pasas cargas a el material que le hace falta para así poder emparejar este material, y es por eso que se les conoce mayormente como donadores. Semiconductor Tipo P: El semiconductor tipo P se produce también comercialmente por el proceso de contaminación, en este caso el contaminante tiene una carga menos que el semiconductor tipo N, entre los más comunes podemos encontrar el aluminio, boro, galio y el indio. Conocidos como aceptores el cual contiene espacios y necesita que sean llenados para emparejar el material. Semiconductor Unión Pn: Al combinar los materiales de tipo P y N se obtienen datos y cosas muy curiosas pero lo mas importante y relevante es la formación del tipo unión PN. Una unión se compone de tres regiones semiconductoras, la región tipo P, una región de agotamiento y la región tipo N. La región de agotamiento se forma al unir estos dos materiales y aquí es donde los átomos que le sobran al tipo N pasan a llenar los espacios que deja el tipo P así complementándose uno con otro. Lo más importante de la unión es su capacidad para pasar corriente en una sola dirección.
2. Cómo se obtiene un semiconductor tipo N y uno tipo P? Qué cualidades o características adquiere este material con respecto al semiconductor puro? Semiconductor P. Un Semiconductor tipo P se obtiene llevando a cabo un proceso de dopado, añadiendo un cierto tipo de compuesto, normalmente trivalente, es decir con 3 electrones en la capa de valencia, al semiconductor para poder aumentar el número de portadores de carga libres (en este caso positivos, huecos). Cuando el material dopante es añadido, éste libera los electrones más débilmente vinculados de los átomos del semiconductor. Este agente dopante es también conocido como material aceptador. El propósito del dopaje tipo P es el de crear abundancia de huecos. En el caso del silicio, una impureza trivalente deja un enlace covalente incompleto, haciendo que, por difusión, uno de los átomos vecinos le ceda un electrón completando así sus cuatro enlaces. Así los dopantes crean los “huecos”. Cada hueco está asociado con un ion cercano cargado negativamente, por lo que el semiconductor se mantiene eléctricamente neutro en general. No obstante, cuando cada hueco se ha desplazado por la red, un protón del átomo situado en la posición del hueco se ve “expuesto” y en breve se ve equilibrado por un electrón. Por esta razón un hueco se comporta como una cierta carga positiva. Cuando un número suficiente de aceptores son añadidos, los huecos superan ampliamente la excitación térmica de los electrones. Así, los huecos son los portadores mayoritarios, mientras que los electrones son los portadores minoritarios en los materiales tipo P. Los diamantes azules (tipo IIb), que contienen impurezas de boro (B), son un ejemplo de un semiconductor tipo P que se produce de manera natural.
Semiconductor Tipo N. Un Semiconductor tipo N se obtiene llevando a cabo un proceso de dopado añadiendo un cierto tipo de compuesto, normalmente pentavalente, es decir con 5 electrones en la capa de valencia, al semiconductor para poder aumentar el número de portadores de carga libres (en este caso, negativos, electrones libres). Cuando el material dopante es añadido, éste aporta sus electrones más débilmente vinculados a los átomos del semiconductor. Este tipo de agente dopante es también conocido como material donanador ya que cede uno de sus electrones al semiconductor. El propósito del dopaje tipo N es el de producir abundancia de electrones libres en el material. Para ayudar a entender como se produce el dopaje tipo N considérese el caso del silicio (Si). Los átomos del silicio tienen una valencia atómica de cuatro, por lo que se forma un enlace covalente con cada uno de los átomos de silicio adyacentes. Si un átomo con cinco electrones de valencia, tales como los del grupo VA de la tabla periódica (ej. fósforo (P), arsénico (As) o antimonio (Sb)), se incorpora a la red cristalina en el lugar de un átomo de silicio, entonces ese átomo tendrá cuatro enlaces covalentes y un electrón no enlazado. Este electrón extra da como resultado la formación de electrones libres, el número de electrones en el material supera ampliamente el número de huecos, en ese caso los electrones son los portadores mayoritarios y los huecos son los portadores minoritarios. A causa de que los átomos con cinco electrones de valencia tienen un electrón extra que “dar”, son llamados átomos donadores. Nótese que cada electrón libre en el semiconductor nunca está lejos de un ion dopante positivo inmóvil, y el material dopado tipo N generalmente tiene una carga eléctrica neta final de cero.
3. Consulte sobre otros tipos de diodos, diferentes al rectificador, el LED, el zéner y el fotodiodo. Diodo de conmutación. Diodo semiconductor diseñado para presentar una transición rápida entre el estado conducción y el estado de bloqueo y a la inversa. Diodo semiconductor. Diodo que permite el paso de la corriente de su zona p, rica en huecos, a su zona n, rica en electrones. Diodo de señal. Diodo semiconductor empleado para la detección o tratamiento de una señal eléctrica de baja potencia. Diodo de unión. Diodo formado por la unión de un material semiconductor tipo n y otro semiconductor tipo p. Diodo Gunn. Dispositivo semiconductor impropiamente calificado de diodo ya que no contiene una unión sino una sucesión de tres capas tipo n más o menos dopadas. En presencia de campos eléctricos elevados, el diodo Gunn es escenario de oscilaciones a muy alta frecuencia. Diodo Schottky. Diodo formado por un contacto entre un semiconductor y un metal, lo que elimina el almacenamiento de carga y el tiempo de recuperación. Un diodo Schottky puede rectificar corrientes de frecuencia superior a 300Mhz. Diodo Schokley. Diodo de cuatro capas p-n-p-n utilizado en los circuitos de conmutación rápida. Además, la tensión
...