ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Funciones Vitales


Enviado por   •  16 de Agosto de 2014  •  7.456 Palabras (30 Páginas)  •  297 Visitas

Página 1 de 30

INDICE

Numero de página

INTRODUCCION………………………………………………….……………………………………………….. 2

FUNCIONES VITALES ………………………………………………………………………………………….… 3

* FUNCIONES VITALES DE EL HOMBRE………………………………………………………… 4

RESPIRACION CELULAR…………………………………………………………………………………… 5

TIPOS DE RESPIRACION………………………………………………………………………………….. 6

RESPIRACION HUMANA…………………………………………………………………………………. 7

FUNCIION DE NUTRICION……………………………………………………………………………… 15

FOTOSINTESIS…………………………………….……………………………………………….……… 17

TRANSPORTE DE SUSTANCIAS…………………………………….………………………………. 21

INTRODUCCION

En este parcial nuestra base de estudio fue acerca de las funciones vitales de los seres vivos esto quiere decir los procesos que se llevan acabo dentro y fuera de el organismo de los seres vivos simplemente para poder estar vivos y realizar su función en la naturaleza.

Estas funciones van desde la función de nutrición la cual tiene una gran importancia en la vida de todos los seres vivos porque mediante ella se obtiene la energía y los nutrientes necesarios para el desarrollo y el crecimiento de los seres vivos que en si es otra función vital de los mismos regresando a la nutrición esta utiliza muchos procesos para los cuales se utiliza gran parte de los órganos internos en el caso de los humanos y los animales, hasta lo que es la excreción que se utiliza para expulsar los desechos que no se pudieron asimilar o que el organismo no necesita para poder vivir pasando claro por lo que es la respiración que es en si la función más indispensable para poder vivir ya que sin poderrespirar no podríamos vivir más de unos cuantos minutos.

Todas estas funciones tienen un propósito para lo cual están creadas específicamente y sin ellas no podríamos vivir.

Funciones Vitales

Las funciones vitales son aquellas que realizan todos los seres vivos. Son tres. La respiración se considera perteneciente al proceso de nutrición; además, no todos los seres vivos son aerobios.

Función de Nutrición

Es la capacidad que poseen los seres vivos de intercambiar con el medio que les rodea materia y energía. Los seres vivos toman del medio las sustancias nutritivas y la energía que necesitan para vivir y expulsan al medio las sustancias de desecho que fabrican. Hacer la función de nutrición supone que los seres vivos realicen los siguientes procesos:

* Ingestión. Es la entrada de la materia al interior del ser vivo. En muchos casos los alimentos no pueden ser utilizados directamente y sufren un proceso denominado digestión por el que se transforman en sustancias reutilizables por las células.

* Metabolismo. Conjunto de reacciones químicas que ocurren en el interior de todas las células de un organismo y que permiten obtener la energía y los materiales necesarios para vivir. Existen 2 tipos de metabolismo el catabolismo y el anabolismo.

* Excreción. Expulsión al exterior de materia. Podemos distinguir dos procesos: la excreción, es decir, la expulsión de sustancias de desecho del metabolismo, como el dióxido de carbono, la orina y el sudor; y la secreción, es decir, la expulsión de sustancias útiles para elorganismo como las lágrimas, la saliva, etc.

La función de nutrición es fundamental para la supervivencia de los seres vivos, ya que les permite crecer, desarrollarse, renovar los tejidos dañados o viejos y disponer de la energía necesaria para el funcionamiento del organismo.

Hay dos tipos de nutrición: la autótrofa y la heterótrofa.

* Los seres vivos autótrofos, son aquellos capaces de fabricar la materia orgánica que constituye su alimento, a partir de sustancias inorgánicas sencillas (H2O, CO2 y sales minerales) y utilizando una fuente de energía. El proceso autótrofo más común en los seres vivos es la fotosíntesis, que utiliza como fuente de energía la luminosa procedente del Sol y que es captada por un pigmento denominado clorofila.

* Los seres vivos heterótrofos, son aquellos que no pueden fabricar la materia orgánica que constituye su alimento y tienen que tomarla del medio: comiéndose a otros seres vivos, sus productos o sus restos.

Función de relación: estimulo/respuesta

Función de relación

Es la capacidad de los seres vivos de captar señales procedentes del medio (externo e interno) y de responder a ellas, es decir nos permite darnos cuenta de lo que ocurre a nuestro alrededor y actuar en función de ello. La función de relación también es muy importante para la supervivencia de los seres vivos pues nos permite nutrirnos, reproducirnos y protegernos del medio donde vivimos (resguardarnos del frío, del calor, etc.) y de otros seres vivos.

Función de reproducción

Es la capacidad de los seresvivos de fabricar nuevos seres semejantes en su anatomía y en su fisiología a sus progenitores. La función de reproducción no es fundamental para la supervivencia de un ser vivo. Sin embargo la reproducción es fundamental para el mantenimiento de la vida misma, ya que si los seres vivos no se reprodujeran las especies se extinguirían y con ellas, la vida. Al igual que en la nutrición hay dos grandes tipos de reproducción: la reproducción asexual y la reproducción sexual.

* La reproducción asexual se produce cuando no intervienen células especializadas y no hay intercambio genético, por lo que los descendientes son genéticamente idénticos a su progenitor.

* La reproducción sexual se produce cuando intervienen células especializadas (gametos) de diferente sexo y ocurre una mezcla de la información genética contenida en ellas.

EL HOMBRE: FUNCIONES VITALES.

El hombre es un animal vertebrado que pertenece al grupo de los mamíferos.

El hombre como todos los seres vivos, nace, crece, nota los cambios que se producen a su alrededor, se reproduce y muere.

Todos los actos que los seres vivos realizan para vivir se llaman funciones vitales. Las funciones vitales pueden resumirse en tres: función de nutrición, función de relación y función de reproducción.

FUNCIÓN DE NUTRICIÓN.-

El hombre se nutre tomando oxígeno del aire por medio de los pulmones, tomando alimentos y transformándolos en el aparato digestivo y distribuyendo los alimentos por todo el cuerpo por medio de la sangre.

FUNCIÓN DE RELACIÓN.-

Elhombre se relaciona con los demás seres vivos por medio de los sentidos y del aparato locomotor. Así percibe lo que pasa a su alrededor, nota los cambios, se desplaza, etc.

FUNCIÓN DE REPRODUCCIÓN.-

El hombre se reproduce de forma vivípara, es decir, nace del vientre de su

madre como los otros animales mamíferos.

ÓRGANOS Y APARATOS.-

El hombre realiza sus funciones vitales por medio de órganos y aparatos.

En el cuerpo humano hay muchos órganos. Los ojos, los pulmones, el corazón, el estómago, los músculos, etc., son órganos.

El conjunto de órganos que realizan la misma función forman un aparato.

Por ejemplo, el aparato digestivo está formado por la boca, el esófago, el estómago, los intestinos y el ano.

Respiración celular

La respiración celular es el conjunto de reacciones bioquímicas por las cuales determinados compuestos orgánicos son degradados completamente, por oxidación, hasta su conversión en sustancias inorgánicas, proceso que rinde energía aprovechable por la célula. Los substratos habitualmente usados en el proceso son la glucosa, otros hidratos de carbono, ácidos grasos, incluso aminoácidos, cuerpos cetónicos u otros compuestos orgánicos. En los animales estos combustibles pueden provenir del alimento, de los que se extraen durante la digestión, o de las reservas corporales. En las plantas su origen pueden ser asimismo las reservas, pero también la glucosa obtenida durante la fotosíntesis.

La respiración celular, como componente del metabolismo, es un proceso catabólico, en el cualla energía contenida en los substratos usados como combustible es liberada de manera controlada. Durante la misma, buena parte de la energía libre desprendida en estas reacciones exotérmicas es incorporada a la molécula de ATP (o de nucleótidos trifosfato equivalentes), que puede ser a continuación utilizada en los procesos endotérmicos, como son los de mantenimiento y desarrollo celular (anabolismo).

Ecuación química

Tipos de respiración

Según la substancia que intervenga como aceptor de los electrones cedidos, podemos distinguir dos clases de respiración celular:

* Respiración aeróbica: Hace uso del O2 como aceptor último de los electrones desprendidos de las sustancias orgánicas oxidadas. Por ejemplo, a partir de la glucosa o de ácidos grasos, los productos resultantes consiten, exclusivamente, en H2O, formada a expensas del O2 aceptor, y en CO2, ambos compuestos inorgánicos. Es la forma más extendida, propia de una parte de las bacterias y de los organismos eucariontes, cuyas mitocondrias derivan de aquéllas. Se llama aerobios a los organismos que, por este motivo, requieren O2.

* Respiración anaeróbica: No interviene el oxígeno, sino que se emplean otros aceptores finales de electrones, muy variados, generalmente minerales y, a menudo, subproductos del metabolismo de otros organismos. Un ejemplo de aceptor es el SO42- (anión sulfato), que en el proceso queda reducido a H2S:

La respiración anaeróbica es propia de procariotas diversos, habitantes sobre todo de suelos y sedimentos, y algunos de estosprocesos son importantes en los ciclos biogeoquímicos de los elementos. No debe confundirse la respiración anaerobia con la fermentación, que es una oxidación-reducción interna a la molécula procesada, en la que los electrones que ceden energía quedan albergados, finalmente, en un compuesto todavía orgánico, como puede ser el caso del ácido láctico durante la fermentación láctica.

TIPOS DE RESPIRACIÓN

1. La respiración aeróbica Fenómeno por el que los seres vivos incorporan a su célula o células el oxígeno proveniente del aire o el oxígeno que aparece disuelto en el agua. Es propia de los organismos eucariontes en general y de algunos tipos de bacterias.

2. La respiración anaeróbica Anaerobios estrictos : mueren en presencia de oxígeno. Anaerobios facultativos : Es un ser vivo, generalmente una bacteria, que crece tanto en presencia como en ausencia de oxígeno. Anaerobios aerotolerantes: como las bacterias del ácido láctico, aunque pueden crecer en presencia de oxígeno, no pueden utilizarlo, sino que obtienen energía exclusivamente por fermentación.

3. Respiración cutánea Consiste en realizar el intercambio gaseoso a través de la piel o de ciertas áreas como la cavidad bucal. La respiración cutánea es propia de los anélidos, de algunos moluscos y de los anfibios.

4.

5. Respiración branquial Consiste en realizar el intercambio gaseoso a través de estructura llamadas branquias, ejemplo : los peces. En los peces el intercambio de gases se produce por un mecanismo denominado sistema deintercambio a contracorriente: La sangre, en las branquias, circula en sentido contrario al agua, lo que permite la máxima extracción de oxígeno por difusión.

6. Branquias Las presentan en moluscos, artrópodos y peces, y las externas en los anfibios es su estado larval y en muchas especies de insectos. Moluscos Artrópodos

7. Respiración branquial Es propia de los vertebrados terrestres: anfibios, reptiles, aves y mamíferos y de algunos vertebrados acuáticos como las ballenas y delfines. En todos los casos, como vimos ya en el ser humano es en los pulmones donde el oxigeno pasa a la sangre de ahí es transportado hacia todo el cuerpo : el dióxido de carbono es eliminado por el proceso inverso.

RESPIRACION HUMANA

La Respiración es un proceso involuntario y automático, en que se extrae el oxigeno del aire inspirado y se expulsan los gases de desecho con el aire espirado.

El aire se inhala por la nariz, donde se calienta y humedece. Luego, pasa a la faringe, sigue por la laringe y penetra en la traquea.

A la mitad de la altura del pecho, la traquea se divide en dos bronquios que se dividen de nuevo, una y otra vez, en bronquios secundarios, terciarios y, finalmente, en unos 250.000 bronquiolos.

Al final de los bronquiolos se agrupan en racimos de alvéolos, pequeños sacos de aire, donde se realiza el intercambio de gases con la sangre.

Los pulmones contienen aproximadamente 300 millones de alvéolos, que desplegados ocuparían una superficie de 70 metros cuadrados, unas 40 veces la extensión de la piel.

Larespiración cumple con dos fases sucesivas, efectuadas gracias a la acción muscular del diafragma y de los músculos intercostales, controlados todos por el centro respiratorio del bulbo raquídeo. En la inspiración, el diafragma se contrae y los músculos intercostales se elevan y ensanchan las costillas. La caja torácica gana volumen y penetra aire del exterior para llenar este espacio. Durante la espiración, el diafragma se relaja y las costillas descienden y se desplazan hacia el interior. La caja torácica disminuye su capacidad y los pulmones dejan escapar el aire hacia el exterior.

Proporciona el oxigeno que el cuerpo necesita y elimina el Dióxido de Carbono o gas carbónico que se produce en todas las células.

Respiración: proceso fisiológico por el cual los organismos vivos toman oxigeno del medio circundante y desprenden dióxido de carbono. El término respiración se utiliza también para el proceso de liberación de nergía por parte de las células, procedente de la combustión de

moléculas como los hidratos de carbono y las grasas. El dióxido de carbono y el agua son los productos que rinde este proceso, llamado respiración celular, para distinguirlo del proceso fisiológico global de la respiración. La respiración celular es similar en la mayoría de los organismos, desde los unicelulares, como la ameba y el paramecio, hasta los organismos superiores.

Circulación pulmonar

La sangre procedente de todo el organismo llega a la aurícula derecha a través de dos venas principales: la vena cava superior y la vena cavainferior. Cuando la aurícula derecha se contrae, impulsa la sangre a través de un orificio -el de la válvula tricúspide cuando se abre- hacia el ventrículo derecho. La contracción de este ventrículo conduce la sangre hacia los pulmones. La válvula tricúspide evita el reflujo de sangre hacia la aurícula, ya que se cierra por completo durante la contracción del ventrículo derecho. En su recorrido a través de los

pulmones, la sangre se oxigena, es decir, se satura de oxígeno. Después regresa al corazón por medio de las cuatro venas pulmonares que desembocan en la aurícula izquierda. Cuando esta cavidad se contrae, la sangre pasa al ventrículo izquierdo y desde allí a la aorta gracias a la contracción ventricular. La válvula bicúspide o mitral evita el reflujo de sangre hacia la aurícula y las válvulas semilunares o sigmoideas, que se localizan en la raíz de la aorta, el reflujo hacia el ventrículo. En la arteria pulmonar también hay válvulas semilunares o sigmoideas.

Respiración humana

En los seres humanos y en otros vertebrados, los pulmones se localizan en el interior del tórax. Las costillas forman la caja torácica, que está delimitada en su base por el diafragma. Las costillas se inclinan hacia adelante y hacia abajo cuando se elevan por la acción del músculo

intercostal, provocando un aumento del volumen de la cavidad torácica. El volumen del tórax también aumenta por la contracción hacia abajo de los músculos del diafragma. En el interior del tórax, los pulmones se mantienen próximos a las paredes de la cajatorácica sin colapsarse,

debido a la presión que existe en su interior. Cuando el tórax se expande, los pulmones comienzan a llenarse de aire durante la inspiración. La relajación de los músculos tensados del tórax permite que éstos vuelvan a su estado natural contraído, forzando al aire a

salir de los pulmones. Se inhalan y se exhalan más de 500 cc de aire en cada respiración; a esta cantidad se denomina volumen de aire corriente o de ventilación pulmonar. Aún se pueden inhalar 3.300 cc más de aire adicional con una inspiración forzada, cantidad que se denomina volumen de reserva inspiratoria.

Una vez expulsado este mismo volumen, aún se pueden exhalar 1.000 cc,con una espiración forzada, llamada volumen de reserva espiratoria. Lasuma de estas tres cantidades se llama capacidad vital. Aparte, en lospulmones siempre quedan 1.200 cc de aire que no pueden salir, que se denomina volumen de aire residual o alveolar. Los pulmones de los humanos son rojizos y de forma piramidal, en consonancia con la forma de la cavidad del tórax. No son simétricos por completo, en el pulmón derecho se distinguen tres lóbulos y en el

izquierdo dos, el cual presenta una cavidad donde se alberga el corazón. En el medio de cada uno de ellos está la raíz del pulmón, que une el pulmón al mediastino o porción central del pecho. La raíz está constituida por las dos membranas de la pleura, los bronquios, las venas

y las arterias pulmonares. Los bronquios arrancan de los pulmones y se dividen y subdividen hasta terminar en el lobulillo, la unidadanatómica y funcional de los pulmones. Las arterias y las venas pulmonares acompañan a los bronquios en su ramificación progresiva hasta

convertirse en finas arteriolas y vénulas de los lobulillos, y éstas a su vez en una red de capilares que forman las paredes de los alveolos pulmonares. Los nervios del plexo pulmonar y los vasos linfáticos se distribuyen también de la misma manera. En el lobulillo, los bronquiolos

se dividen hasta formar los bronquiolos terminales, que se abren al atrio o conducto alveolar. Cada atrio se divide a su vez en sacos alveolares, y éstos en alveolos.

ORGANOS

Los Órganos Respiratorios pueden dividirse en vías respiratorias superiores, vías respiratorias inferiores y pulmones.

Las vías respiratorias superiores comprenden la cavidad nasal y la faringe, mientras que las vías respiratorias inferiores comprenden la laringe, la tráquea y el árbol bronquial.

El árbol bronquial se ramifica hasta alcanzar los pulmones, los cuales se dividen en lóbulos.

Nariz

Además de poseer la función de órgano del olfato, la nariz tiene las importantes funciones de limpiar, calentar y humedecer el aire inhalado.

La nariz tiene una porción externa y una porción interna que se encuentra dentro del cráneo. La porción externa está formada por una estructura cartilaginosa y ósea de soporte cubierta por piel y revestida por una membrana mucosa. El puente de la nariz está formada por los huesos nasales que lo mantienen en una posición fija. Como éste tiene una estructura de cartílago flexible, el resto de la narizexterna es ligeramente flexible. Sobre la superficie de la nariz externa se encuentran dos aperturas que se llaman narinas externas (nariz) u orificios nasales.

La porción interna de la nariz es una gran cavidad en el cráneo que se encuentra debajo de éste y por arriba de la boca. En su parte anterior, la nariz interna se comunica con la nariz externa y en la parte posterior se comunica con la nariz externa y en la parte posterior se comunica con la garganta (faringe) por medio de las dos aberturas que se llaman narinas internas (coanas). Los cuatro senos paranasales (frontal, esfenoidal, maxilar y etmoidal) y los conductos nasolacrinales también se abren hacia la nariz interna. Las paredes laterales de la nariz interna están formada por los huesos etmoides, maxilar superior, lagrimal, palatino y concha nasal inferior. El etmoides también forma el techo de la nariz. El piso está formado por el paladar blando, los huesos palatinos y la apófisis palatina del maxilar, que juntos forman el paladar duro.

La parte interna de la nariz externa y de la nariz interna está formada por una cavidad nasal, que se divide en un lado derecho y un lado izquierdo por una porción vertical que se llama tabique nasal. La porción anterior del tabique está formada primordialmente por el cartílago. El resto está formado por el hueso vómer, la lámina perpendicular del hueso etmoides, el hueso maxilar superior y los etmoides.

El lado interno de la nariz situado inmediatamente detrás de las ventanas nasales está provisto de pelos que limpian alaire de las partículas más grandes. En la cavidad nasal existe un gran número de vasos sanguíneos de paredes delgadas y situadas muy próximos a la superficie que irradian calor y por consiguiente calientan el aire inhalado. La cavidad nasal se mantiene húmeda por ciertas secreciones glandulares que también humedecen el aire. El aire inspirado que atraviesa la nariz se humidifica de esta manera totalmente y alcanza una temperatura de 32°C, independientemente de la temperatura reinante en el exterior.

La porción externa está formada por una estructura cartilaginosa y ósea de soporte cubierta por piel y revestida por una membrana mucosa.

Faringe

Es la porción superior de las vías respiratorias y del tracto digestivo. Conecta con las aperturas en cuatro áreas generales: la cavidad bucal (en la parte trasera de la lengua), la cavidad nasal, la laringe (que se dirige hacia la tráquea) y el esófago. Durante el proceso de tragado, la parte nasal de la faringe, la laringe y la cavidad bucal cooperan para cerrar el conducto respiratorio de forma que al tragar la comida no entre en la tráquea.

Laringe

¿De qué manera el ser humano emite sonidos o habla?

Después de circular por la cavidad nasal y la faringe, el aire inhalado llega a la laringe. Esta última está parcialmente cubierta por la epiglotis, que cierra completamente la abertura superior de la laringe durante la deglusión. Las cuerdas vocales también cierran al deglutir.

Las vías respiratorias extrapulmonares tienen su punto más estrecho en las cuerdas vocales, dondecualquier estrechamiento adicional puede dar lugar a un perjuicio considerable de la respiración, por ejemplo, durante o después de la intubación las cuerdas vocales pueden inflamarse, provocando obstrucción respiratoorio o ronquera (después de la extubación).

Las cuerdas vocales son la porción de la laringe que emite sonidos. Las cuerdas vocales son dos pequeños repliegues situados a ambos lados de la vía aérea. La contracción de los músculos laringeos pueden acercar o separar las cuerdas vocales, que también pueden contraerse o relajarce en sus bordes pueden aplanarce o engrosarce por acción de los músculos incluidos en ellas. Cuando las cuerdas vocales se acercan el aire pasa entre ellas, vibran y producen sonidos; las diferentes alturas del sonido depende del grado de estiramiento y de engrosamiento o de adelgazamiento de los bordes de las cuerdas vocales. Sin embargo

la formación de palabras y otros sonidos complicados es función de la boca y también la laringe, pues la característica de un sonido depende en gran medida de la posición de los labios mejillas ,dientes, lengua y paladar. Para emitir las palabras y otros sonidos es necesario la regulación simultanea de la respiración, cuerdas vocales y boca. Ello se realizan por un centro cerebral especial llamado área de Broca, situado en el lóbulo frontal izquierdo.

Tráquea

La tráquea es la sección superior del conducto respiratorio, separada de la faringe por la laringe. Está compuesta por cartílago reforzado que desciende cerca de diez centímetros hasta losbronquios pulmonares. La tráquea, que descansa ligeramente sobre el esófago, puede extenderse ligeramente durante la acción de tragar, de respirar o doblar el cuello. Está revestida por una capa mucosa y cilios que ayudan a filtrar y expulsar el polvo. La acción constante de estos cilios transporta el polvo y otras sustancias hacia la faringe, donde es tragado. Cuando la traquea superior o la faringe quedan obstruidas de forma que se corta el paso de aire, como en la inflamación de los tejidos, se realiza una pequeña incisión en la garganta y en la tráquea, en una operación denominada traqueotomía, que permite el paso de aire a la tráquea.

Es una vía aérea tubular que permite el paso del aire y que mide cerca de 12 centímetros de longitud y 2.5 centímetros de diámetro. Se localiza por delante del esófago y se extiende desde la laringe hacia la quinta vértebra torácica (T5), donde se divide en un bronquio primario izquierdo.

La pared de la tráquea está formada por una capa mucosa, una submucosa, una cartilaginosa y una adventicia (capa externa de tejido conectivo laxo). El epitelio de la mucosa de la tráquea es pseudoestratificado. Esta formado de células columnares ciliadas que alcanzan la superficie de la Luz de la tráquea, de células en copa y de células básales que no alcanzan la superficie de la luz. El epitelio proporciona

Bronquios

Los bronquios son los tubos que transportan aire desde la tráquea a los lugares más apartados de los pulmones, donde pueden transferir oxígeno a la sangre en pequeños sacos deaire denominados alvéolos. Dos bronquios principales, los bronquios derecho e izquierdo, se ramifican desde el extremo inferior de la tráquea en lo que se conoce como la bifurcación de la tráquea. Un bronquio se extiende en cada pulmón. Los bronquios continúan dividiéndose en pasillos menores, denominados bronquiolos, formando ramificaciones como en un árbol que se extienden por todo el esponjoso tejido pulmonar. El exterior de los bronquios se compone de fibras el elásticas y cartilaginosas, y presenta refuerzos anulares de tejido muscular liso. Los bronquios pueden expandirse durante la inspiración, permitiendo que se expandan los pulmones a su vez, y contraerse durante la expiración cuando se exhala el aire.

Pulmones

Son dos bolsas esponjosas que se expanden con contracciones diafragmaticas para admitir aire y que albergan los alvéolos, donde la difusión de oxigeno y dióxido de carbono regenera las células sanguíneas. Los pulmones se dividen en dos mitades, derecha e izquierda, que tienen tres y dos lóbulos, respectivamente. Cada mitad está fijada por el mediastino y su parte inferior descansa sobre el diafragma. La superficie media de cada mitad presenta una apertura, denominada hilio, a través de la cual pasan los bronquios, nervios y vasos sanguíneos. Los bronquios continúan en subdivisiones menores, denominadas bronquiolos. Estas, a su vez, se ramifican en conductos alveolares que terminan en grupos de alvéolos en los sacos alveolares. La sangre pobre en oxígeno es bombeada a los pulmones desde el corazón através de la arteria pulmonar. Esta arteria se divide para llegar a cada pulmón, subdividiéndose en arteriolas y metarteriolas que profundizan en el tejido pulmonar. Estas metarteriolas continúan en redes de vasos menores, denominados capilares, que pasan a través de la superficie alveolar. La sangre difunde los restos de dióxido de carbono a través de la pared membranosa de los alvéolos y recoge oxígeno del aire. La sangre regenerada se envía entonces a las metavénulas y vénulas, que son tributarias de la vena pulmonar. Esta vena transporta la sangre regenerada al corazón para que sea bombeada por todo el cuerpo para la alimentación de las células.

Existe una gran variedad de términos que hacen referencia a la capacidad pulmonar: aire corriente, aire complementario, aire suplemental (reserva), capacidad vital, aire residual, aire mínimo y capacidad pulmonar total. Cada uno de estos términos se refiere a un aspecto diferente de la capacidad de aire pulmonar. La capacidad pulmonar total se refiere a todo el aire que puede exhalarse de los pulmones m s el aire residual que quede en las cámaras pulmonares. Una persona no puede exhalar todo el aire de los pulmones completamente, pues provocaría el colapso de los propios pulmones, los bronquios y los bronquiolos. Incluso entonces algo de aire permanece en los alvéolos, lo que se denomina aire mínimo. La máxima cantidad de aire que puede exhalarse se denomina capacidad vital (unos cuatro litros de media), siendo el aire residual el que queda en los pulmones (un litro de media).La capacidad pulmonar total, por lo tanto, es de unos cinco litros de aire. El aire corriente es el aire inhalado y exhalado en la respiración normal (cerca de medio litro). Siguiendo a la expiración normal, la cantidad de aire que se toma con la inhalación m s profunda posible se conoce como aire complementario, y es algo menos de tres litros. Siguiendo a la inspiración normal, la cantidad de aire expelido en la mayor exhalación posible se conoce como aire suplementario, o reserva, y es, aproximadamente, un litro de aire. Las enfermedades y trastornos de los pulmones, como las enfermedades pulmonares inducidas por el tabaco, enfisema, bronquitis, neumonía y asma, pueden llegar a reducir drásticamente la capacidad pulmonar.

La función primordial del pulmón es la de mantener presiones parciales de oxigeno y de bióxido de carbono en la sangre arterial. Esta es la función fisiológica de la Respiración, fenómeno que depende de tres (3) procesos principales: Difusión, ventilación y perfusión.

CONCLUSIÓN

La ventilación pulmonar, o respiración consta de inspiración y espiración. Los movimientos de aire hacia adentro y afuera de los pulmones dependen de los cambios en la presión gobernados en parte por la Ley de Boyle.

Los movimientos respiratorios se usan para expresar emociones y para limpiar las vías aéreas. Algunos tipos de movimientos respiratorios incluyen tos, estornudos, bostezos, suspiros, llantos, hipo y sonrisas.

Los volúmenes pulmonares de la ventilación son el volumen corriente, el volumen de reservainspiratoria, el volumen de reserva espiratoria, el volumen residual y el volumen mínimo.

Las capacidades pulmonares, la suma de dos o más volúmenes, incluyen la capacidad pulmonar total, la capacidad inspiratoria, la capacidad funcional residual, la capacidad vital y la capacidad total.

LA FUNCIÓN DE NUTRICIÓN: EL APARATO DIGESTIVO.-

Cuando andamos y corremos, cuando pensamos y hablamos, cuando trabajamos, e incluso cuando descansamos, gastamos energías. El hombre, al realizar cualquier actividad gasta energías. Para reponer las energías que gasta, el hombre tiene que alimentarse. Pero en los alimentos que tomamos hay unas partes que son aprovechables y otras que no lo son.

En el aparato digestivo se separan las partes aprovechables del alimento de aquellas que no lo son.

El aparato digestivo del hombre consta de los siguientes órganos: boca, esófago, estómago, intestino y ano.

Para evitar enfermedades y lesiones debemos cuidar mucho todos los órganos del aparato digestivo. Para hacer bien la digestión también debemos tener cuidados especiales.

LA BOCA.- Los alimentos entran al aparato digestivo por la boca. En la boca están los dientes, la lengua y las glándulas salivales.

Los dientes definitivos del adulto son 32 piezas. Hay 8 dientes incisivos (que sirven para cortar), 4 caninos (que sirven para desgarrar), 8 premolares y 12 molares (que sirven para triturar).

La lengua es un órgano musculoso en el que hay unos pequeños bultitos que son las papilas gustativas. En estas papilas está el sentido delgusto. La lengua está recubierta por unas 10.000 papilas gustativas, que se agrupan en áreas sensibles a los sabores dulces, agrios, salados y amargos. El sentido del olfato añade información para conseguir una amplia gama.

Las glándulas salivales producen la saliva, (unos dos litros diarios) que, cuando masticamos, se va mezclando con los alimentos. Cuando los alimentos están bien mezclados, la lengua los va empujando y así pasan al esófago a través de la garganta.

LA FARINGE.-

A continuación de la boca está la faringe o garganta. Es un hueco vertical de

unos 13 cms. de longitud, que comunica con la laringe y el esófago. En ella se

verifica la deglución de los alimentos.

En la unión de la faringe con la laringe se encuentra el hueso hioides, que

cierra cuando conviene el paso de los alimentos a las vías respiratorias.

EL ESTÓMAGO.- Los alimentos ya masticados pasan por la garganta y el

esófago hasta llegar al estómago. El estómago es un ensanchamiento del tubo digestivo donde se almacenan y digieren los alimentos y tiene una bolsa curvada. Su capacidad es de unos 2 litros aproximadamente. Las paredes del estómago son muy musculosas y su elasticidad le permite ensancharse cuando tiene que almacenar una gran cantidad de alimento.

La entrada del estómago se llama cardias y la salida se llama píloro. El cardias y el píloro son esfínteres musculosos. El cardias se abre para permitir la entrada de los alimentos desde el esófago al estómago, y se cierra para impedir que retrocedan. A la salida del estómago hayuna válvula llamada píloro. El píloro se abre y se cierra cada cierto tiempo para dejar que los alimentos vayan pasando al intestino.

La digestión en el estómago suele durar dos o tres horas. Durante ese tiempo

no es conveniente tomar de nuevo alimentos, ni bañarse en agua fría, ni realizar ejercicios violentos. Así se evitan cortes de digestión, que provocan malestar, vómitos, mareos y otros trastornos.

EL INTESTINO.-

El intestino es un larguísimo tubo que mide unos ocho metros y medio de

longitud y está unido al estómago por el píloro.

El intestino se divide en dos partes: el intestino delgado y el intestino grueso.

El intestino delgado es un largo tubo, de unos siete metros de longitud, que

parte del estómago y termina en el intestino grueso. Da muchas vueltas y, a pesar de su gran longitud, ocupa poco espacio. Se divide en tres tramos, llamados: duodeno, yeyuno e íleon. El duodeno es el tramo más cercano al estómago, el yeyuno es el tramo medio y el íleon es el tramo final, por lo tanto el más cercano al intestino grueso.

Lo mismo que en el estómago, los músculos del intestino delgado son muy

potentes y, al moverse, hacen avanzar a los alimentos.

El intestino grueso tiene aproximadamente un metro y medio de longitud y termina en el ano, que es la obertura final del tubo digestivo.

LA DIGESTIÓN Y LA ASIMILACIÓN.-

En el estómago, los alimentos se mezclan con unos líquidos llamados jugos gástricos. Los jugos gástricos van separando las distintas sustancias que forman los alimentos. Cuandoel alimento llega al intestino, las partes aprovechables pasan a la sangre, a través de las paredes del intestino. Las partes que no sirven se expulsan al exterior por el ano y se llaman excrementos.

FOTOSINTESIS

La fotosíntesis es uno de los procesos metabólicos de los que se valen las células para obtener energía.

Es un proceso complejo, mediante el cual los seres vivos poseedores de clorofila y otros pigmentos, captan energía lumn ellos transforman el agua y el CO2 en compuestos orgánicos reducidos (glucosa y otros), liberando oxígeno:

LUZ

6 CO2 + 6 H2O C6H12O6 + 6O2

clorofila

La energía captada en la fotosíntesis y el poder reductor adquirido en el proceso, hacen posible la reducción y la asimilación de los bioelementos necesarios, como nitrógeno y azufre, además de carbono, para formar materia viva.

La radiación luminosa llega a la tierra en forma de"pequeños paquetes", conocidos como cuantos o fotones. Los seres fotosintéticos captan la luz mediante diversos pigmentos fotosensibles, entre los que destacan por su abundancia las clorofilas y carotenos.

Al absorber los pigmentos la luz, electrones de sus moléculas adquieren niveles energéticos superiores, cuando vuelven a su nivel inicial liberan la energía que sirve para activar una reacción química: una molécula de pigmento se oxida al perder un electrón que es recogido por otra sustancia, que se reduce. Así laclorofila puede transformar la energía luminosa en energía química..

En la fotosíntesis se diferencian dos etapas, con dos tipos de reacciones:

1. Fase luminosa: en en tilacoide en ella se producen transferencias de electrones.

2. Fase oscura: en el estroma. En ella se realiza la fijación de carbono

FASE LUMINOSA

Los hechos que ocurren en la fase luminosa de la fotosíntesis se pueden resumir en estos puntos:

1. Síntesis de ATP o fotofosforilación que puede ser:

* acíclica o abierta

* cíclica o cerrada

2. Síntesis de poder reductor NADPH

3. Fotolisis del agua

Los pigmentos presentes en los tilacoides de los cloroplastos se encuentran organizados en fotosistemas(conjuntos funcionales formados por más de 200 moléculas de pigmentos); la luz captada en ellos por pigmentos que hacen de antena, es llevada hasta la molécula de "clorofila diana" que es la molécula que se oxida al liberar un electrón, que es el que irá pasando por una serie de transportadores, en cuyo recorrido liberará la energía.

|

Existen dos tipos de fotosistemas, el fotosistema I (FSI), está asociado a moléculas de clorofila que absorben a longitudes de ondas largas (700 nm)y se conoce como P700. El fotosistema II (FSII), está asociado a moléculas de clorofila que absorben a 680 nm. por eso se denomina P680.

La luz es recibida en el FSII por la clorofila P680 que se oxida al liberar un electrón que asciende a un nivel superior de energía; ese electrón es recogido por una sustancia aceptora de electronesque se reduce,la Plastoquinona (PQ) y desde ésta va pasando a lo largo de una cadena transportadora de electrones, entre los que están varios citocromos (cyt b/f) y así llega hasta la plastocianina (PC) que se los cederá a moléculas de clorofila del FSI.

En el descenso por esta cadena, con oxidación y reducción en cada paso , el electrón va liberando la energía que tenía en exceso; energía que se utiliza para bombear protones de hidrógeno desde el estroma hasta el interior de los tilacoides, generando un gradiente electroquímico de protones. Estos protones vuelven al estroma a través de la ATP-asa y se originan moléculas de ATP.

El fotosistema II se reduce al recibir electrones procedentes de una molécula de H2O, que también por acción de la luz, se descompone en hidrógeno y oxígeno, en el proceso llamado fotólisis del H2O. De este modo se puede mantener un flujo continuo de electrones desde el agua hacia el fotosistema II y de éste al fotosistema I.

En el fotosistema I la luz produce el mismo efecto sobre la clorofila P700, de modo que algún electrón adquiere un nivel energético superior y abandona la molécula, es recogido por otro aceptor de electrones , la ferredoxina y pasa por una nueva cadena de transporte hasta llegar a una molécula de NADP+ que es reducida a NADPH,al recibir dos electrones y un protón H+ que también procede de la descomposición del H2O.

Los dos fotosistemas pueden actuar conjuntamente - proceso conocido como esquema en Z, para producir la fotofosforilación (obtención de ATP) o hacerlosolamente el fotosistema I; se diferencia entonces entre fosforilación no cíclica o acíclica cuando actúan los dos, y fotofosforilación cíclica, cuando actúa el fotosistema I unicamente. En la fotofosforilación acíclica se obtiene ATP y se reduce el NADP+ a NADPH , mientras que en la fotofosforilación cíclica únicamente se obtiene ATP y no se libera oxígeno.

|

Mientras la luz llega a los fotosistemas, se mantiene un flujo de electrones desde el agua al fotosistema II, de éste al fotosistema I, hasta llegar el NADP+ que los recoge; ésta pequeña corriente eléctrica es la que mantiene el ciclo de la vida.

|

FASE OSCURA

En esta fase, se va a utilizar la energía química obtenida en la fase luminosa, en reducir CO2, Nitratos y Sulfatos y asimilar los bioelementos C, H, y S, con el fin de sintetizar glúcidos, aminoácidos y otras sustancias.

Las plantas obtiene el CO2 del aire a través de los estomas de sus hojas. El proceso de reducción del carbono es cíclico y se conoce como Ciclo de Calvin., en honor de su descubridor M. Calvin.

TRASNPORTE DE SUSTANCIAS

1.- TRANSPORTE PASIVO.- Es lento y poco común. El agua pasa de forma libre. Si ponemos glicerol pasa 1000 veces más lento que el agua, el sodio tiene una velocidad de 1/106, el triptófano es 1/105 y los H+ no entran al estar cargados e hidratados. Si se tratan con ionóforos se destruye la membrana y entra todo, ya no existe permeabilidad selectiva. Esto condujo a la conclusión de que existían transportadores de membrana

2.- TRANSPORTE MEDIADO PORPROTEÍNAS

Pueden ser:

.- Uniportadores: El paso se da de forma directa.

.- Simportadores: El transporte se da por acople con otra sustancia.

.- Antiportadores: A la vez que entra uno sale otro, el paso de uno favorece la salida del otro.

Los transportadores son proteínas transmembranales que sufren cambios conformacionales cuando se une el ligando, son específicas para una determinada clase de compuesto, siempre tienen gran afinidad.

Este transporte puede ser:

A.- Mecanismos de transporte por difusión simple facilitada. Es poco frecuente en procariotas, no funciona contra gradiente, aunque sigue la cinética de Michaelis-Menten. Por ejemplo el glicerol entra y se acumula al ser fosforilado, (pasa de glicerol a glicerol-P).

B.- Mecanismos de transporte activo en bacterias.

1.- Transporte ligado a un gradiente de iones (hidrogeniones): La sustancia no se modifica con el transporte. Está mediado por la fuerza motriz de protones.

Por simporte. Por ejemplo la lactosa-H+. la unión del protón antes o después, permite un cambio conformacional e introduce lactosa junto con H+. Otro ejemplo es la melibiosa con H+ o Na+ (éste se forma a expensas del PMF: fuerza protón-motriz).

Por antiporte se intercambian H+, entra un elemento y sale el otro. Por ejemplo, entra el fosfoglicerato que se antiporta con fosfato inorgánico y éste sale. El Na, Ca y K se intercambian por un protón, éste entra y los otros salen.

2.- Transporte dirigido por ATP: La sustancia no se modifica con el transporte.

A:- Existenunas permeasas periplásmicas sensibles al choque osmótico. Por éstas permeasas se transporta histidina, malato y arabinosa. En el transporte de histidina median cuatro proteínas:

.- Proteína J: (Proteína de unión o BP) reconoce el sustrato y lo secuestra del medio quedando unido.

.- Proteínas transmembranales: son la proteína M y la proteína Q, son hidrofóbicas ya que atraviesan la membrana, forman un canal.

.- Proteína P: Lleva un motivo estructural que es el que une ATP. Estas zonas están conservadas evolutivamente, son ABC (ATP de cassette de unión o ATP binding cassette). Una vez secuestrado el sustrato se transporta por un canal. (La entrada de histidina conlleva un gasto de ATP), así por un extremo unen ATP y por el otro entra en la membrana interaccionando con el complejo M/Q y los otros fosfolípidos.

Las proteínas ABC forma parte de canales de influjo y eflujo. Las bacterias lo usan para sacar antibióticos fuera.

B.- Otros tipos de proteínas son transportadores que actúan secuencialmente. Transportan a través de 2 membranas. La membrana externa y la membrana plasmática. Se transportan vitamina B12 (proteína grande) o el sideróforo de hierro. Estos sistemas tienen por una parte un receptor de la membrana externa que une la sustancia, tiene un complejo que conecta este receptor a la membrana plasmática formada por XBC, XBD (proteínas de membrana) y otra proteína TON B que conecta la membrana plasmática con el receptor de fuera. Les dice al receptor que la membrana plasmática está energizada, setransporta primero al espacio periplásmico y por un sistema semejante al de la histidina la introduce dentro.

(El Fe3+ es muy insoluble, echan sustancias al exterior de bajo peso molecular (sideróforos), poseen alta afinidad por el Fe3+ y lo captan. El receptor posee apetencia alta por ello y lo toma).

C.- Existen otras ATPasas que son las ATPasas de tipo P, (son frecuentes en mamíferos) que son las Na/K ATPasas que median en el transporte en bacterias y las ATPasa de Ca2+ (RE). Poseen una proteína grande que se fosforila en el aspartato durante el transporte, son permeasas que tienen aspartato, (todas las ATPasas tienen apártico). Cuando la concentración de K baja se desreprime el transportador y entra el K, alta [K+]int y baja [NA2+]int. La entrada de Mg también es por una ATPasa de tipo P. (ATPasa dependiente de Ca2+ y de Na+). En mamíferos los H+ y K+ acidifican el estómago.

D.- También están las ATPasa de tipo A que median la resistencia a iones como en el arsenato, actúan de dentro a fuera producen un eflujo. Producen resistencia al arsénico. Sacan del interior compuestos venenosos o metales pesados.

3.- Transporte por translocación de grupo: Está también mediado por ATP, se gasta energía, la sustancia se altera químicamente durante el transporte. No hay gradiente porque la sustancia cambia de naturaleza química. La fosfotransferasa funciona en bacterias para realizar el transporte de muchos azúcares, éstos se fosforilan durante el transporte. Los azúcares pueden ser glucosa, fructosa, manosa, NAG, etc. In Intervienen proteínas comunes y específicas.

La energía proviene del fosfoenolpiruvato (PEP), sustrato inicial y mediante una enzima en el citoplasma se transmite el fosfato a la enzima I y sale el piruvato. La enzima I actúa con la proteína HPr (alto peso molecular y es estable al calor), transmitiendo un fosfato y queda fosforilada, esto ocurre en el citoplasma. En la membrana la HPr-P pasa el Pi a la enzima II que es una proteína de membrana diferente de unos sistemas a otros, es específica del azúcar que se transporte. En el caso del manitol esta enzima tiene 3 dominios (IIA, IIB, y IIC). Lo primero que se fosforila es el dominio IIA que da al citosol, tiene una his que se fosforila y luego se transfiere el fosfato a una cys del IIB, y por último el IIC es la proteína que reconoce y transporta al manitol fosforilándolo con el fosfato del dominio

Las bacterias usan diferentes sistemas para transportar las mismas proteínas. También se transportan otros elementos, como bases púricas, pirimidínicas y ácidos grasos. Existen distintos mutantes:

.- Generales: cuando la mutación afecta a los dominios o proteínas de la enzima I que son generales y comunes para todos. Afecta al transporte de todos los azúcares transportados por proteínas.

.- Específicos: son mutantes en los dominios específicos para azúcares concretos. En el caso de la glucosa el dominio IIA se llama enzima III, y es diferente.

...

Descargar como  txt (46 Kb)  
Leer 29 páginas más »