Glucolisis
daao2513 de Octubre de 2014
3.065 Palabras (13 Páginas)311 Visitas
TALLER DE GLUCOLISIS
1. Esquematice la glucolisis indicando las reacciones y deferentes enzimas que participan en este ciclo. ¿Cuál es la ganancia energética neta?
RTA: GLUCOLISIS
La glucólisis es una secuencia lineal de reacciones catabólicas o degradativas, concretamente compuesta por 10 reacciones; son secuencias oxidativas que liberan cierta cantidad de energía.
Es el proceso por el cual de glucosa, compuesta por 6 átomos de carbono, se pasa a dos moléculas de ácido pirúvico, de 3 átomos de carbono cada uno. Además, durante el proceso se libera un balance neto de energía de 2 ATP. Por otra parte, al ser un proceso oxidativo, acompañando ha de ir una reducción, por lo que se obtienen dos moléculas de NADH + H+.
Se trata de un proceso que se lleva a cabo en el citosol de la célula, por lo que los 10 enzimas que llevan a cabo las 10 reacciones se encuentran solubilizadas en el interior.
Es un proceso independiente de la presencia de oxígeno, aunque algunas de las reacciones posteriores que sufre el pirúvico si dependen de oxígeno.
La glucólisis comprende dos etapas, cada una de ellas compuesta por 5 reacciones:
• La primera etapa comprende las primeras cinco reacciones, en las cuales la molécula de glucosa inicial se transforma en dos moléculas de 3-fosfogliceraldehido o gliceraldehido-3-fosfato. Se trata de una fase que se suele llamar fase preparativa, donde la glucosa se va a romper en dos moléculas de 3 carbonos cada una, con la particularidad de que se van a incorporar dos ácidos fosfóricos (dos moléculas de gliceraldehido 3 fosfato; por lo que hay dos fosfatos, uno en cada molécula), lo que lleva al consumo de 2 moléculas de ATP.
• En la segunda etapa comprende las siguientes 5 reacciones que llevan a la finalización del procedo, donde los dos gliceraldehido 3 fosfato se transforman en dos ácidos pirúvico. Es esta etapa la que conlleva la parte oxidativa, por lo que se produce la reducción de las dos moléculas de NAD+ a NADH + H+.
Además, en esta etapa se han de producir 4 moléculas de ATP para dar lugar al balance neto de + 2 ATP, es decir, la liberación de 2 ATP, por eso que esta segunda etapa recibe el nombre de fase de generación de energía.
Desde el punto de vista energético, el rendimiento es muy bajo, solamente con la producción de dos moléculas de ATP; pero en este proceso se forma el ácido pirúvico, que participa en otras reacciones en las que la energía neta liberada es mucho mayor.
El NADH + H+ en condiciones de aerobiosis, es decir, en presencia de oxígeno, da lugar a agua (reduce al oxígeno) y a la oxidación del mismo a NAD+. Esto es la cadena respiratoria (cadena de transporte electrónico) llevada a cabo en las mitocondrias (por lo que el NADH + H+ ha de entrar en la misma), en la que se libera cierta cantidad de energía aprovechada para la síntesis de ATP a partir de ADP y Pi en la llamada fosforilación oxidativa.
El NADH + H+ producido en la glucólisis, con presencia de oxígeno, es utilizado para generar ATP, es decir, energía.
Si existen condiciones de anaerobiosis, es decir, sin la presencia de oxígeno, el NADH + H+ ha de ser transformado en NAD+, utilizado en otras reacciones acopladas a las llamadasfermentaciones anaeróbicas.
De las 10 reacciones, 7 son reacciones reversibles, que van a ocurrir en el proceso contrario, la gluconeogénesis (síntesis de glucógeno a partir de ácido pirúvico); mientras que 3 reacciones son irreversibles.
Reacciones de la glucólisis
La glucólisis comienza con la glucosa, donde la primera reacción, irreversible, consiste en una fosforilación en el carbono 6 de la glucosa, originando por tanto la glucosa-6-fosfato. Esto significa la utilización de una molécula de ATP que dona un Pi y queda liberado como ADP. Esta primera reacción está catalizada por un enzima denominado hexokinasa (kinasa = cataliza reacciones de fosforilación)
La hexokinasa es un enzima que actúa mediante un mecanismo de ajuste inducido, donde la unión del primer sustraía, la glucosa, induce a un cambio de conformación, mediante el cual se produce un acercamiento de los dominios que engloban al sustraía, adquiriendo su centro activo un carácter apolar favorable para la reacción de fosforilación en el carbono 6 de la glucosa, con la liberación de una molécula de agua.
Como bien su nombre indica, hexokinasa, cataliza reacciones de fosforilación de distintas hexosas. Presentan una amplia especificidad de sustraías, aunque presenta gran afinidad hacia la glucosa. Presenta una Km muy baja.
Como mecanismo de regulación, la hexokinasa se inhibe por altas concentraciones de glucosa-6-fosfato.
En el hígado encontramos un isoenzima de la hexokinasa denominada glucoquinasa, que cataliza la misma reacción pero con distintas características. Este enzima es especifico para la glucosa, pero en cambio tienen menor afinidad por la misma, debido a que su Km es más alta. Esto significa que solo funciona al existir altas concentraciones de glucosa, lo que le permite al hígado ajustar o regular las concentraciones sanguíneas de glucosa.
La segunda reacción de la glucólisis es reversible, donde se pasa de la glucosa-6-fosfato (G6P) a fructosa-6-fosfato (F6P). Se trata de una reacción de isomerización de aldosa a cetosa catalizada por la fosfoglucoisomerasa.
Se trata de una reacción en la cual primeramente, la G6P rompe su forma cíclica, se abre, sufriendo unos procesos que dan lugar a la formación de un intermediario de reacción denominado cis-enol, con una corta vida, donde seguidamente se forma la cetosa que al ciclarse da lugar a la forma furanosa de la F6P.
Al ser una reacción de isomerización, se transfiere el grupo oxígeno que formaba el aldehído (del carbono 1), al carbono 2, dando lugar a un grupo ceto. Todo esto es catalizado por el enzima.
La tercera reacción, también irreversible, conlleva la presencia y consumo de ATP, originando la fructosa-1,6-bisfosfato (FBP).
Se trata de una reacción de fosforilación, por lo que está catalizada por una kinasa, concretamente la fosfofructokinasa-1 (PFK-1), que fosforila el carbono 1 de la F6P.
Esta reacción irreversible constituye el principal punto de control o regulación de la glucólisis. Se trata del enzima más regulado.
Al igual que la anterior reacción irreversible, son ambas lo suficientemente exorgónicas (liberan demasiada energía) como para ser prácticamente irreversibles en el organismo in vivo.
La cuarta reacción es reversible, y consiste en la ruptura de la molécula de FBP para dar lugar a 3-fosfodihiroxiacetona (DHAP) y a 3-fosfogliceraldehido (G3P), ambas con 3 carbonos. La 3-fosfodihiroxiacetona corresponde a los átomos de carbono 1, 2 y 3 de la FBP; mientras que el también llamado gliceraldehido-3-fosfato corresponde a los carbonos 4, 5 y 6, siendo el 6 el 1 de la nueva molécula.
El enzima que cataliza esta reacción es una aldolasa, concretamente recibe el nombre de fructosa bisfosfato aldolasa.
La aldolasa presentan un su centro activo dos residuos ácido-base de Lys e His.
Lo primero que ocurre es la ruptura del anillo de la FBP, para dar lugar a la forma abierta, dejando al carbono 2 con el grupo ceto libre.
El primer pasa de la aldolasa mediante un mecanismo de catálisis covalente, consiste en la formación de un enlace entre el carbono 2 del sustrato y el nitrógeno del grupo amino del resto de Lys del centro activo del enzima. Esto conlleva la pérdida de una molécula de agua, y da lugar a la denominada base de Schiff.
Después actúa el enzima mediante una catálisis ácido-base, concretamente, el a.a. actúa como una base (generalmente la His) captando un protón. Capta el protón del OH del carbono 3, desencadenando procesos en el que el oxigeno con carga negativa del carbono 3 ataca nucleofílicamente al carbono 4, rompiendo la fructosa por el enlace entre los carbonos 3-4.
El resultado son dos moléculas de 3 carbonos, una de las cuales queda aún unida al enzima por el enlace base de Schiff, mientras que la otra molécula es liberada como gliceraldehido-3-fosfato.
La molécula unida al enzima es liberada mediante la hidrólisis de la base de Schiff, donde el oxígeno queda como grupo ceto y los dos hidrógenos en el nitrógeno del enzima, cerrando así el ciclo.
La quinta y última reacción de la primera etapa de la glucólisis, también reversible, consiste en una isomerización catalizada por la triosa-fosfato isomerasa, cuyo sustrato son las triosas (las dos moléculas anteriores). La función de este enzima es la transformación de uno de los productos de la reacción anterior en el otro. Concretamente, la triosa-fosfato isomerasa cataliza la isomerización del 3-fosfodihiroxiacetona a 3-fosfogliceraldehido, dado que este es el sustrato de la siguiente reacción glucolítica.
Esto quiere decir que de una molécula de glucosa, en cinco reacciones obtenemos dos moléculas de gliceraldehido-3-fosfato, dando por terminada la primera etapa o fase de la glucólisis.
Una vez terminada la etapa de preparación, comienza la fase de generación de energía, es decir, las cinco siguientes reacciones que finalizan la glucólisis, con el objetivo fundamental de aprovechas los fosfatos de las dos moléculas de G3P para sintetizar ATP.
Hasta el momento, los enlaces de fosfato del gliceraldehido no son enlaces ricos en energía, por lo que en esta fase se va a dar lugar a ellos, de ahí lo que generación de energía.
Para ello, partiendo de las dos moléculas de G3P, se lleva a cabo la sexta reacción, una reacción
...