ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Límites (una introducción)


Enviado por   •  6 de Junio de 2014  •  Tareas  •  5.485 Palabras (22 Páginas)  •  271 Visitas

Página 1 de 22

Límites (una introducción)

Aproximarse

A veces algo no se puede calcular directamente... ¡pero puedes saber cuál debe de ser el resultado si te vas acercando más y más!

La división que marca una separación entre dos regiones se conoce como límite. Este término también se utiliza para nombrar a una restricción o limitación, al extremo que se puede alcanzar desde el aspecto físico y al extremo a que llega un periodo temporal.

Para la matemática, un límite es una magnitud a la que se acercan progresivamente los términos de una secuencia infinita de magnitudes. Un límite matemático, por lo tanto, expresa la tendencia de una función o de una sucesión mientras sus parámetros se aproximan a un cierto valor.

Una definición informal del límite matemático indica que el límite de una función f(x) es T cuando x tiende a s, siempre que se puede hallar para cada ocasión un x cerca de s de manera tal que el valor de f(x) sea tan cercano a T como se pretenda.

Usemos por ejemplo esta función:

(x2-1)/(x-1)

Y calculemos su valor para x=1:

(12-1)/(1-1) = (1-1)/(1-1) = 0/0

¡Pero 0/0 es un problema! En realidad no podemos saber el valor de 0/0, así que tenemos que encontrar otra manera de hacerlo.

En lugar de calcular con x=1 vamos a acercarnos poco a poco:

x (x2-1)/(x-1)

0.5 1.50000

0.9 1.90000

0.99 1.99000

0.999 1.99900

0.9999 1.99990

0.99999 1.99999

... ...

El infinito es una idea muy especial. Sabemos que no podemos alcanzarlo, pero podemos calcular el valor de funciones que tienen al infinito dentro.

Vamos a empezar con un ejemplo interesante.

Pregunta: ¿Cuál es el valor de 1/∞?

Respuesta: ¡No lo sabemos!

¿Por qué no lo sabemos?

La razón más simple es que infinito no es un número, es una idea. Así que 1/∞ es un poco como decir 1/belleza o 1/alto.

A lo mejor podríamos decir que 1/∞ = 0 ... pero eso es un poco problemático, porque si dividimos 1 en infinitas partes y resulta que cada una es 0, ¿qué ha pasado con el 1?

De hecho 1/∞ es indefinido.

¡Pero podemos acercarnos a él!

Así que en lugar de intentar calcular con infinito (porque no sacaremos ninguna respuesta razonable), vamos a probar con valores de x más y más grandes:

x 1/x

1 1.00000

2 0.50000

4 0.25000

10 0.10000

100 0.01000

1,000 0.00100

10,000 0.00010

Ahora vemos que cuando x crece, 1/x tiende a 0

Ahora tenemos una situación interesante:

• No podemos decir qué pasa cuando x llega a infinito

• Pero vemos que 1/x va hacia 0

Queremos decir que la respuesta es "0" pero no podemos, así que los matemáticos usan la palabra "límite" para referirse exactamente a esto

El límite de 1/x cuando x tiende a infinito es 0

Y lo escribimos así:

En otras palabras:

Cuando x va a infinito, 1/x va a 0

Cuando veas "límite", piensa en "acercarse"

Propiedades. Evaluación de limites.

Límite de una constante

Límite de una suma

Límite de un producto

Límite de un cociente

Límite de una potencia

Límite de una función

g puede ser una raíz, un log, sen ,cos, tg, etc.

Límite de una raíz

Límite de un logaritmo

Limites laterales

Existen funciones en las que a veces no es posible calcular directamente el límite en algún punto. Esto es debido a que estas funciones están definidas de diferente forma a la izquierda y a la derecha de ese punto. Para estudiar estos límites, se necesita recurrir a los límites laterales.

La condición necesaria y suficiente para que una función f(x) tenga límite en un punto de abscisa a es que tenga un límite lateral por la izquierda, tenga límite lateral por la derecha y ambos sean iguales. Si una función es convergente o tiene límite en un punto, éste debe ser único. Además, toda función que tiene límite en un punto está acotada en un entorno de ese punto.

Para calcular el límite de una función en un punto, no interesa lo que sucede en dicho punto sino a su alrededor.

LÍMITE POR LA DERECHA

El límite de una función f(x) cuando x tiende hacia el punto a por la izquierda esL, si y sólo si:

para todo ε > 0 existe δ > 0 tal que:

si x (a+δ, a), entonces |f (x) - L| <ε.

...

Descargar como (para miembros actualizados)  txt (25.7 Kb)  
Leer 21 páginas más »
Disponible sólo en Clubensayos.com