ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Mecanica De Los Fluidos


Enviado por   •  23 de Octubre de 2014  •  1.828 Palabras (8 Páginas)  •  269 Visitas

Página 1 de 8

Introducción

La mecánica de fluidos, es la parte de la física que se ocupa de la acción de los fluidos en reposo o en movimiento, así como de las aplicaciones y mecanismos de ingeniería que utilizan fluidos. La mecánica de fluidos es fundamental en campos tan diversos como la aeronáutica, la ingeniería química, civil e industrial, la meteorología, las construcciones navales y la oceanografía.

La mecánica de fluidos puede subdividirse en dos campos principales: la estática de fluidos, o hidrostática, que se ocupa de los fluidos en reposo, y la dinámica de fluidos, que trata de los fluidos en movimiento. El término de hidrodinámica se aplica al flujo de líquidos o al flujo de los gases a baja velocidad, en el que puede considerarse que el gas es esencialmente incompresible. La aerodinámica, o dinámica de gases, se ocupa del comportamiento de los gases cuando los cambios de velocidad y presión son lo suficientemente grandes para que sea necesario incluir los efectos de la compresibilidad.

A manera de síntesis, el siguiente trabajo busca incorporar el concepto de la mecánica de fluidos (Principio de Pascal, presión y profundidad) en nuestra formación como profesionales.

La interrogante que motiva el siguiente trabajo es: ¿Qué es ley de Pascal?, y más específicamente, ¿Cuál es el método usado para presiones en tuberías de secciones conocidas y en tuberías de secciones irregulares?, como también un definición más clara sobre lo que es presión y profundidad.

Desarrollo

Ley de Pascal

En física, el principio de Pascal o ley de Pascal, es una ley enunciada por el físico y matemático francés Blaise Pascal (1623–1662) que se resume en la frase: la presión ejercida sobre un fluido poco compresible y en equilibrio dentro de un recipiente de paredes indeformables se transmite con igual intensidad en todas las direcciones y en todos los puntos del fluido.1

El principio de Pascal puede comprobarse utilizando una esfera hueca, perforada en diferentes lugares y provista de un émbolo. Al llenar la esfera con agua y ejercer presión sobre ella mediante el émbolo, se observa que el agua sale por todos los agujeros con la misma velocidad y por lo tanto con la misma presión.

También podemos ver aplicaciones del principio de Pascal en las prensas hidráulicas, en los elevadores hidráulicos, en los frenos hidráulicos y en los puentes hidráulicos.

La prensa hidráulica es una máquina compleja que permite amplificar las fuerzas y constituye el fundamento de elevadores, prensas hidráulicas, frenos y muchos otros dispositivos hidráulicos.

La prensa hidráulica constituye la aplicación fundamental del principio de Pascal y también un dispositivo que permite entender mejor su significado. Consiste, en esencia, en dos cilindros de diferente sección comunicados entre sí, y cuyo interior está completamente lleno de un líquido que puede ser agua o aceite. Dos émbolos de secciones diferentes se ajustan, respectivamente, en cada uno de los dos cilindros, de modo que estén en contacto con el líquido. Cuando sobre el émbolo de menor sección S1 se ejerce una fuerza F1 la presión p1 que se origina en el líquido en contacto con él se transmite íntegramente y de forma casi instantánea a todo el resto del líquido. Por el principio de Pascal esta presión será igual a la presión p2 que ejerce el fluido en la sección S2(Ver Anexo 1), es decir:

con lo que las fuerzas serán, siendo, S1 < S2:

y por tanto, la relación entre la fuerza resultante en el émbolo grande cuando se aplica una fuerza menor en el émbolo pequeño será tanto mayor cuanto mayor sea la relación entre las secciones:

La Ecuación de Bernoulli

La energía de un fluido en cualquier momento consta de tres componentes:

 cinética: es la energía debida a la velocidad que posea el fluido;

 potencial o gravitacional: es la energía debido a la altitud que un fluido posea;

 energía de presión: es la energía que un fluido contiene debido a la presión que posee.

La siguiente ecuación conocida como "ecuación de Bernoulli" (trinomio de Bernoulli) consta de estos mismos términos.

Dónde:

= velocidad del fluido en la sección considerada.

= densidad del fluido.

= presión a lo largo de la línea de corriente.

= aceleración gravitatoria

= altura en la dirección de la gravedad desde una cota de referencia.

Para aplicar la ecuación se deben realizar los siguientes supuestos:

Viscosidad (fricción interna) = 0 Es decir, se considera que la línea de corriente sobre la cual se aplica se encuentra en una zona 'no viscosa' del fluido.

Caudal constante

Flujo incompresible, donde ρ es constante.

La ecuación se aplica a lo largo de una línea de corriente o en un flujo laminar.

Aunque el nombre de la ecuación se debe a Bernoulli, la forma arriba expuesta fue presentada en primer lugar por Leonhard Euler.

Un ejemplo de aplicación del principio se da en el flujo de agua en tubería.

También se puede reescribir este principio en forma de suma de presiones multiplicando toda la ecuación por , de esta forma el término relativo a la velocidad se llamará presión dinámica, los términos de presión y altura se agrupan en la presión estática(Ver Anexo 2).

Esquema del efecto Venturi:

O escrita de otra manera más sencilla:

Dónde:

es una constante-

Igualmente podemos escribir la misma ecuación como la suma de la

...

Descargar como (para miembros actualizados)  txt (11.1 Kb)  
Leer 7 páginas más »
Disponible sólo en Clubensayos.com