Programacion lineal
anyfg4 de Septiembre de 2011
561 Palabras (3 Páginas)2.436 Visitas
Programación lineal.
La Programación Lineal es un procedimiento o algoritmo matemático mediante el cual se resuelve un problema indeterminado, formulado a través de ecuaciones lineales, optimizando la función objetivo, también lineal.
Consiste en optimizar (minimizar o maximizar) una función lineal, denominada función objetivo, de tal forma que las variables de dicha función estén sujetas a una serie de restricciones que expresamos mediante un sistema de inecuaciones lineales.
A pesar de que la programación lineal se empezó a estudiar desde finales del S.XIX no fue hasta mediados del presente siglo en que tuvo auge como técnica matemática aplicable a los problemas de la empresa.
El Dr. G. Damtzing desarrolló el método simplex y con ello hizo posible la solución de grandes problemas modelados con programación lineal que solo quedaban en la situación de estudios. Paralelamente a la invención de este método a partir de mediados del siglo se desarrollo la computación digital y se pudo tener resultados óptimos a los problemas estudiados que se quedaron como modelos.
La programación lineal es actualmente la técnica matemática utilizada mas actualmente gracias a que el algoritmo simplex es muy eficiente y al desarrollo de la computación.
Lo que se busca con la aplicación de la programación lineal es resolver problemas comunes y a la vez muy variados de la empresa en donde en general se tienen necesidades por satisfacer con cierto número de recursos limitados o escasos y con el objetivo de lograrlo en forma óptima. Esto significa la búsqueda de un valor máximo cuando se trata de beneficios; o bien la búsqueda de un mínimo cuando se trata de esfuerzos a desarrollar.
Un modelo de programación lineal es un conjunto de expresiones matemáticas las cuales deben cumplir la característica de linealidad que puede cumplirse siempre y cuando las variables utilizadas sean de primer grado. Además un modelo de P.L debe tener las propiedades de:
• Proporcionalidad
• Aditividad (adición)
• Divisibilidad
• Certidumbre(certeza)
Aplicaciones
La programación lineal constituye un importante campo de la optimización por varias razones, muchos problemas prácticos de la investigación de operaciones pueden plantearse como problemas de programación lineal. Algunos casos especiales de programación lineal, tales como los problemas de flujo de redes y problemas de flujo de mercancías se consideraron en el desarrollo de las matemáticas lo suficientemente importantes como para generar por si mismos mucha investigación sobre algoritmos especializados en su solución. Una serie de algoritmos diseñados para resolver otros tipos de problemas de optimización constituyen casos particulares de la más amplia técnica de la programación lineal. Históricamente, las ideas de programación lineal han inspirado muchos de los conceptos centrales de la teoría de optimización tales como la dualidad, la descomposición y la importancia de la convexidad y sus generalizaciones. Del mismo modo, la programación lineal es muy usada en la microeconomía y la administración de empresas, ya sea para aumentar al máximo los ingresos o reducir al mínimo los costos de un sistema de producción. Algunos ejemplos son la mezcla de alimentos, la gestión de inventarios, la cartera y la gestión de las finanzas, la asignación de recursos humanos y recursos de máquinas, la planificación de campañas de publicidad, etc.
Otros son:
• Optimización de la combinación de cifras comerciales en una red lineal de distribución de agua.
• Aprovechamiento óptimo de los recursos de una cuenca hidrográfica, para un año con afluencias caracterizadas por corresponder a una determinada frecuencia.
• Soporte para toma de decisión
...