ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

SISTEMA DE ENDOMENBRANAS

LMila7 de Junio de 2015

4.192 Palabras (17 Páginas)231 Visitas

Página 1 de 17

SISTEMA DE ENDOMEMBRANAS

INTRODUCCIÓN

Una de las características distintivas de las células eucariotas respecto de las procariotas es su alto grado de compartimentalización. La presencia de un núcleo bien diferenciado, con una envoltura nuclear que confina el material genético al interior del núcleo, es sólo un aspecto de la separación espacial de funciones dentro de la organización celular. El citoplasma, a su vez, se encuentra recorrido en todas direcciones por un sistema de sacos y túbulos, cuyas paredes de membrana ofician de límite entre la matriz citoplasmática y la luz o cavidad del sistema. Este conjunto de estructuras membranosas, incluida la envoltura nuclear, se conoce como sistema de endomembranas (SE) o sistema vacuolar citoplasmático (SVC).

COMPONENTES DEL SISTEMA DE ENDOMEMBRANAS

Dentro del sistema de endomembranas se distinguen los siguientes elementos:

a) Retículo endoplasmático granular o rugoso (REG o RER). Es un grupo de cisternas aplanadas que se conectan entre sí mediante túbulos. Presente en todos los tipos celulares, se halla especialmente desarrollado en las células secretoras de proteínas. El REG ofrece una cara citosólica tachonada de ribosomas, a los que debe su aspecto rugoso. Los ribosomas se unen a las membranas del REG por su subunidad mayor, mediante receptores específicos, las proteínas integrales de las membranas cisternales conocidas como riboforinas.

b) Retículo endoplasmático agranular o liso (REA o REL). Su aspecto es más tubular y carece de ribosomas. Es poco conspicuo en la mayoría de las células, pero alcanza un notable desarrollo en las células secretoras de hormonas esteroides.

Fig. 5.1 - El sistema de endomembranas

c) Aparato o complejo de Golgi. Constituido por sacos discoidales apilados, como mínimo en número de tres, rodeados por pequeñas vesículas. Cada saco presenta una cara convexa y otra cóncava, esta última orientada hacia la superficie celular. En las células animales se ubica típicamente entre el núcleo y el polo secretor de la célula, en tanto en las células vegetales aparece fragmentado en varios complejos denominados dictiosomas o golgiosomas.

d) Envoltura nuclear. Doble membrana que encierra una cavidad, la cisterna perinuclear, en directa continuidad con la luz del REG, del cual se considera una dependencia. Al igual que éste, presenta ribosomas sobre la cara citosólica. Durante la división celular se desorganiza y se fragmenta en cisternas que se incorporan al REG. Al finalizar la división, la envoltura nuclear se reconstituye a partir de aquél.

FUNCIONES DEL SISTEMA DE ENDOMEMBRANAS

El sistema de endomembranas es asiento de enzimas que participan en la síntesis de diversos tipos de macromoléculas: proteínas y glucoproteínas en el REG, lípidos en el REL y glúcidos complejos en el aparato de Golgi. A la vez, el SVC proporciona una vía intracelular para la circulación de sus productos y una sección de “empaque” para la exportación de algunos de ellos. Por último, maneja un sistema de señales que le permite dar a los mismos el destino final para el cual fueron sintetizados, ya sea en el interior de la célula o en el medio extracelular. Algo así como un “estampillado”, un sistema de códigos postales que guía a las moléculas en la dirección correcta.

La vía de tránsito intracelular implica un transporte desde el RE hasta el aparato de Golgi; a partir de éste hay dos caminos posibles: hacia las vesículas de secreción y desde allí a la membrana plasmática, o bien hacia los lisosomas.

Fig. 5.2 - Vías de tránsito intracelular en el SE

El transporte vesicular

El transporte en el SVC se lleva a cabo por medio de vesículas, pequeñas bolsas limitadas por membrana que se desprenden como brotes de un compartimento dador y viajan por el citosol hasta alcanzar el compartimento receptor; entonces se fusionan a este último.

Hay varios aspectos que interesa destacar con respecto al transporte vesicular:

Fig. 5.3- Transporte vesicular

¿Qué transportan las vesículas? Cada vesícula tiene un continente (la membrana) y un contenido (su naturaleza dependerá de cuál sea el compartimento dador); ambos se desplazan de un compartimento a otro. Cuando se produce la fusión al compartimento receptor, el contenido de la vesícula se vuelca al lumen del mismo. La membrana vesicular, por su parte, se incorpora a la membrana receptora. Si la estructura diana es la membrana plasmática, entonces el contenido es vertido al medio.

¿Qué mueve a las vesículas? En su trayecto de una cisterna a otra, las vesículas son movidas por elementos del citoesqueleto.

Fig. 5.4- Vesículas revestidas

¿Qué causa la brotación? Las vesículas que participan en el transporte, cualquiera sea el compartimento de origen, son vesículas revestidas. Se entiende por tales a las vesículas que llevan una cubierta formada por subunidades proteicas ensambladas a modo de enrejado sobre la cara externa de la membrana vesicular. Dicho revestimiento es adquirido en el momento en que se produce la gemación o protrusión de la vesícula y es su misma causa: a medida que las subunidades se ensamblan generan la curvatura de la membrana que da origen al brote. El revestimiento se desensambla inmediatamente después de la brotación; este paso es necesario, pues mientras las vesículas se hallan revestidas no pueden fusionarse con otra membrana.

¿Cómo reconocen las vesículas al compartimento receptor? Las membranas de las cisternas poseen pares de moléculas complementarias: v-SNARE (en la vesícula de transporte) y t-SNARE (en la cisterna destino o target). La fusión de una vesícula con una cisterna sólo se produce previo reconocimiento del par v-SNARE /t-SNARE adecuado.

Fig. 5.5 - Reconocimiento del compartimento receptor: v-SNARE = vesicle-SNAP receptor, t-SNARE = target-SNAP receptor

¿Cómo se mantiene constante la cantidad de membrana en cada compartimento? Las membranas vesiculares incorporadas a un compartimento receptor forman un nuevo brote (causado por proteínas de revestimiento) y se desprenden para regresar al compartimento de origen, como vesículas de reciclaje. El compartimento de origen, obviamente, ha de poseer las mismas t-SNARE que la cisterna receptora. El reciclaje no sólo permite mantener constante la cantidad de membrana de los distintos sectores del sistema, también hace posible que cada uno de ellos conserve su identidad, recuperando las moléculas que le son propias y le otorgan sus funciones particulares.

Fig. 5.6- Reciclaje de membrana

¿Puede la membrana transportada permanecer como componente del compartimento receptor? Sí. De hecho, éste es el mecanismo por el cual las cisternas y la membrana plasmática incorporan nuevos componentes y crecen.

¿Cómo se corresponden las caras del sistema de endomembranas con las caras de la membrana celular? Como consecuencia del tránsito vesicular, las moléculas de membrana sintetizadas en el RE (liso y rugoso) o en el aparato de Golgi, llegan a integrarse a la membrana celular. Sabemos, por otra parte, que la membrana plasmática es asimétrica: los componentes lipídicos de ambas monocapas – la citosólica y la extracelular – son diferentes, los dominios proteicos tienen una orientación definida dentro de la bicapa y los restos glucídicos de glucolípidos y glucoproteínas sólo se orientan hacia el medio extracelular. ¿Dónde se genera esta asimetría? Se genera en los compartimientos de origen, donde los componentes de membrana adoptan su orientación definitiva; luego, el transporte vesicular se limita a mantener dicha orientación. De esta forma, todo aquello que tiene una posición luminal en el sistema de endomembranas, pasa a una ubicación extracelular en la membrana celular, en tanto que los componentes de la cara citosólica del sistema se integran a la cara citosólica de la membrana celular.

Fig. 5.7- Asimetría de las membranas. Correspondencia entre el SE y la membrana plasmática.

VESÍCULAS REVESTIDAS

Se conocen hasta el momento dos tipos de vesículas revestidas: las vesículas con revestimiento de clatrina y las vesículas con revestimiento de coatómero.

El revestimiento de clatrina se ensambla a partir de subunidades constituidas por seis cadenas proteicas enlazadas, los trisqueliones, que forman alrededor de la vesícula un enrejado donde alternan hexágonos y pentágonos, con el aspecto de una cúpula geodésica. Llevan cubierta de clatrina las vesículas que brotan del aparato de Golgi hacia los lisosomas, las vesículas de secreción regulada y las formadas por endocitosis.

El revestimiento de coatómero se forma a partir de las COP (por proteínas del coatómero). Está presente en las vesículas que viajan del RE al aparato de Golgi, las que realizan transporte dentro de este complejo, las destinadas a la secreción continua y en todas las vesículas recicladoras.

Tanto la cubierta de clatrina como la de coatómero se unen a membrana sólo después de que otra molécula, el ARF (factor de ribosilación del ADP) se haya fijado a la misma. El revestimiento promueve la deformación de la membrana y la gemación de la vesícula, en tanto que el ARF le señala dónde y cuándo hacerlo.

Si la cubierta sólo es importante para la gemación -proceso que es básicamente el mismo en cada orgánulo- ¿por qué necesita diversos tipos de cubierta la célula? La razón más probable es que la cubierta seleccione la carga que ha de empacarse en cada vesícula. En algunos casos, las

...

Descargar como (para miembros actualizados) txt (27 Kb)
Leer 16 páginas más »
Disponible sólo en Clubensayos.com