Estadistica
Lendryckm29 de Enero de 2013
3.968 Palabras (16 Páginas)337 Visitas
Estadística
La Estadística es la parte de las Matemáticas que se encarga del estudio de una determinada característica en una población, recogiendo los datos, organizándolos en tablas, representándolos gráficamente y analizándolos para sacar conclusiones de dicha población.
Según se haga el estudio sobre todos los elementos de la población o sobre un grupo de ella, vamos a diferenciar dos tipos de Estadística:
Estadística descriptiva. Realiza el estudio sobre la población completa, observando una característica de la misma y calculando unos parámetros que den información global de toda la población.
Estadística inferencial. Realiza el estudio descriptivo sobre un subconjunto de la población llamado muestra y, posteriormente, extiende los resultados obtenidos a toda la población.
Veamos dos ejemplos que nos aclaren estos dos tipos de Estadística:
Ejemplo 1. Cuando van a llegar cualquier tipo de elecciones, por ejemplo, las elecciones generales, es muy frecuente que los medios de comunicación, nos adelanten los resultados de encuestas o sondeos en los que se nos indica el resultado final de dichas elecciones con una precisión y con un error determinados. Estos sondeos son realizados por distintas técnicas sobre un grupo (muestra) más o menos numeroso de personas. Naturalmente, cuánto mayor sea el número de españoles con derecho a voto encuestados, mayor será la fiabilidad de la encuesta, pero también mayor será el coste del sondeo. El estudio de esta muestra se haría mediante estadística descriptiva, pero lo que nos interesa no es el resultado de este estudio reducido sino el resultado final de las elecciones. El paso de generalizar los resultados de la muestra a toda la población, se hace mediante técnicas de Estadística inferencial. La elección de la muestra debe hacerse mediante métodos de muestreo para que el estudio resulte lo más fiable posible.
Ejemplo 2. Supongamos que estamos en un instituto con un número muy elevado de alumnos y alumnas, por ejemplo 500, y queremos hacer un estudio estadístico sobre su altura.
Un método sería pasar clase por clase y medirlos a todos, esto nos podría llevar un tiempo considerable pero sería la forma más exacta de hacer dicho estudio, aunque es fácil encontrarnos con ausencias y tendríamos que volver varios días y pasar lista para conseguir la estatura de todo el alumnado. Una vez que tengamos todos los datos en nuestro poder los resultados los obtendríamos mediante Estadística descriptiva.
Otra posibilidad podría ser pasar clase por clase, decirle a los alumnos y alumnas que anoten su estatura en un papel y recogerlos todos. También así tendríamos un estudio de Estadística descriptiva, aunque seguramente menos fiable que con el método anterior, pues casi con toda seguridad, y lo digo por experiencia, algunos alumnos escriban su estatura a cálculo y otros, con ganas de bromas, muy por encima o muy por debajo de la realidad.
Y otra posibilidad sería escoger una muestra, es decir un grupo de por ejemplo 50 personas, hacer el estudio descriptivo sobre ellas y después generalizarlo a todo el instituto con Estadística inferencial. En este caso, comprobaríamos por una parte que cuánto mayor sea la muestra más trabajo tendremos, pero más fiable será el resultado final y por otra, que la elección de la muestra debe hacerse de manera que permita también fiarnos del resultado obtenido. Si estamos en segundo de bachillerato, ¿podríamos coger como muestra los 50 alumnos de este curso? ¿Por qué? ¿Qué forma de elegir la muestra se te ocurre?
En cualquiera de los dos ejemplos, ¿cuáles serían los resultados más fiables?
Conceptos básicos. Ya hemos hablado de ellos en los ejemplos anteriores, en cualquier estudio estadístico aparecerán los conceptos: individuo, cada uno de los elementos, personas u objetos que se van a estudiar;población, que es el conjunto formado por todos los elementos a los que les vamos a hacer el estudio; muestra, el subconjunto de la población que elegimos para hacer un estudio más reducido.
Población oblación y muestras:
Población:
El concepto de población en estadística va más allá de lo que comúnmente se conoce como tal. Una población se precisa como un conjunto finito o infinito de personas u objetos que presentan características comunes.
Una población es un conjunto de todos los elementos que estamos estudiando, acerca de los cuales intentamos sacar conclusiones.
Una población es un conjunto de elementos que presentan una característica común.
Ejemplo:
Los miembros del Colegio de Ingenieros del Estado Cojedes.
El tamaño que tiene una población es un factor de suma importancia en el proceso de investigación estadística, y este tamaño vienen dado por el número de elementos que constituyen la población, según el número de elementos la población puede ser finita o infinita.
Cuando el número de elementos que integra la población es muy grande, se puede considerar a esta como una población infinita, por ejemplo; el conjunto de todos los números positivos. Una población finita es aquella que está formada por un limitado número de elementos, por ejemplo; el número de estudiante del Núcleo San Carlos de la Universidad Nacional Experimental Simón Rodríguez.
Cuando la población es muy grande, es obvio que la observación de todos los elementos se dificulte en cuanto al trabajo, tiempo y costos necesarios para hacerlo. Para solucionar este inconveniente se utiliza una muestra estadística.
Es a menudo imposible o poco práctico observar la totalidad de los individuos, sobre todos si estos son muchos. En lugar de examinar el grupo entero llamado población o universo, se examina una pequeña parte del grupo llamada muestra.
Muestra:
Se llama muestra a una parte de la población a estudiar que sirve para representarla.
Una muestra es una colección de algunos elementos de la población, pero no de todos". "Una muestra debe ser definida en base de la población determinada, y las conclusiones que se obtengan de dicha muestra solo podrán referirse a la población en referencia.
Ejemplo;
El estudio realizado a 50 miembros del Colegio de Ingenieros del Estado Cojedes.
El estudio de muestras es más sencillo que el estudio de la población completa; cuesta menos y lleva menos tiempo. Por último se aprobado que el examen de una población entera todavía permite la aceptación de elementos defectuosos, por tanto, en algunos casos, el muestreo puede elevar el nivel de calidad.
Una muestra representativa contiene las características relevantes de la población en las mismas proporciones que están incluidas en tal población.
Los expertos en estadística recogen datos de una muestra. Utilizan esta información para hacer referencias sobre la población que está representada por la muestra. En consecuencia muestra y población son conceptos relativos. Una población es un todo y una muestra es una fracción o segmento de ese todo.
Variable y tipos:
Al conjunto de los distintos valores numéricos que adopta un carácter cuantitativo se llama variable estadística.
• Variables cualitativas:
Son las variables que expresan distintas cualidades, características o modalidad. Cada modalidad que se presenta se denomina atributo o categoría y lamedición consiste en una clasificación de dichos atributos. Las variables cualitativas pueden ser ordinales y nominales.
Las variables cualitativas pueden ser dicotómicas cuando sólo pueden tomar dos valores posibles como sí y no, hombre y mujer o son politómicas cuando pueden adquirir tres o más valores.
Dentro de ellas podemos distinguir:
Variable cualitativa ordinal: La variable puede tomar distintos valores ordenados siguiendo una escala establecida, aunque no es necesario que el intervalo entre mediciones sea uniforme, por ejemplo, leve, moderado, grave
Variable cualitativa nominal: En esta variable los valores no pueden ser sometidos a un criterio de orden como por ejemplo los colores o el lugar de residencia.
• Variables cuantitativas:
Son las variables que se expresan mediante cantidades numéricas. Las variables cuantitativas además pueden ser:
Variable discreta: Es la variable que presenta separaciones o interrupciones en la escala de valores que puede tomar. Estas separaciones o interrupciones indican la ausencia de valores entre los distintos valores específicos que la variable pueda asumir. Un ejemplo es el número de hijos.
Variable continua: Es la variable que puede adquirir cualquier valor dentro de un intervalo especificado de valores. Por ejemplo el peso o la altura, que solamente limitado por la precisión del aparato medidor, en teoría permiten que siempre exista un valor entre dos cualesquiera.
Según la influencia que asignemos a unas variables sobre otras, podrán ser:
Variables independientes: Son las que el investigador escoge para establecer agrupaciones en el estudio, clasificando intrínsecamente a los casos del mismo. Un tipo especial son las variables de confusión, que modifican al resto de las variables independientes y que de no tenerse en cuenta adecuadamente pueden alterar los resultados por medio de un sesgo.
Variables dependientes: Son las variables de respuesta que se observan en el estudio y que podrían estar influenciadas por los valores de las variables independientes.
Escala de medición:
Una escala es un patrón convencional de medición, y básicamente consiste en un instrumento capaz de representar con gran fidelidad verbal, gráfica o simbólicamente el
...