ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

PRÁCTICA DIRIGIDA DE INTERES COMPUESTO

luigi_mc2209Ensayo27 de Septiembre de 2020

1.203 Palabras (5 Páginas)205 Visitas

Página 1 de 5

PRÁCTICA DIRIGIDA DE INTERES COMPUESTO

I =C*t*i

M = C+I

VF = C+I

VF = C+C*t*i

VF = C (1+t*i)

VF = VA (1+t*i)

VA= VF/ (1+t*i)

TASA ANUAL/12 = TASA MENSUAL …………….TASA MENSUAL*3= TASA TRIMESTRAL

EN EL INTERES COMPUESTO VAMOS A CAPITALIZAR EL INTERES:

M = C *(1+i)n

VF = VA (1+i)n                                          VA= VF / (1+i)n  Ò  VA= VF (1+i)-n[pic 1]

  1. CONVERSION DE TASAS:  implica el cambio del tipo (nominal o efectiva) de tasas

OCURRE CUANDO QUEREMOS CONVERTIR DE TASA NOMINAL A EFECTIVA O VICEVERSA

 

tasa efectiva=  tem= tasa efectiva mensual  tea= tasa efectiva anual, tet= tasa efectiva trimestral= i

tasa nominal= tcm= tasa convertible mensual, tasa convertible mensual anualmente = j

tasa nominal= tns= tasa nominal semestral anual, tasa nominal semestral = j

i              j            ò         j           i[pic 2][pic 3]

[pic 4]

i = j /m

POR EJEMPLO:

 Se tiene una tasa convertible o nominal semestral del 18% y deseamos una tasa efectiva semestral

Tes= tcs/2; tes = 18%/2 = 9%

Tnt= 16%; tet;    tet = tnt /m ; tet= 16%/4%

  1. EQUIVALENCIA DE TASAS, implica el cambio de PERIODICIDAD

SIGNIFICA QUE AMBAS TASAS DEBEN SER DEL MISMO TIPO; es decir, o bien nominales o efectivas.

tem                          tec       o        tns                         tnt[pic 5][pic 6]

tem= 2.5% y necesito tec (tasa efectiva cuatrimestral)

(1+i1) m1 = (1+ i2) m2

                                       4                                        1[pic 7][pic 8]

(1+0.025)12 = (1+tec)3

(1.025)4 = (1+tec)1

       1.1038 = 1+ tec

        1.1038-1 = tec

         0.1038= 10.38%; por lo tanto, se puede decir que una tasa efectiva mensual del 2.5% equivale a una tasa efectiva cuatrimestral del 10.38%.

                      Tns                                                                    tnb[pic 9]

[pic 10][pic 11]

      Paso 1

                                                                                                        Paso 3

                      Tes                                                                    teb[pic 12]

                                                Paso 2

paso 1 = tes=tns/2 (CONVERSION DE TASAS)

paso 2 : (1+tes)2 = (1+ teb )6 (EQUIVALENCIA DE TASAS)

paso 3:  teb a tnb =    teb =tnb/6 ; tnb = teb *6 (CONVERSION DE TASAS)

  1. Se tienen obligaciones con una tasa convertible trimestral del 32% de cuatro pagarés de S/7,500, S/6,000, S/18,000 y S/15,000.00 cuyos vencimientos son en 3, 5, 8 y 13 meses. Sin embargo, transcurridos 4 meses decide refinanciar la deuda con un pago de contado de S/10,000, y un pago único 6 meses después sujetos a una tasa nominal semestral del 40%, el cual no pudo cumplir y tuvo que financiar la deuda en dos pagos iguales a 3 y 5 meses cuya tasa de fue del 12% trimestral. DETERMINAR LOS PAGOS.
  1. Un vendedor mantiene una deuda distribuida en 4 pagarés de S/12,000, S/8,000, S/15,000 y S/9,000.00; cuyos vencimientos son en 5, 9, 12 y 16 meses con una tnc del 27%, pero luego de tres meses realiza  un pago al contado de S/16,000.00 y pacta dos pagos  por la deuda en 4 y 7 meses de plazo con una teb del 6%; sin embargo, al vencerse el ultimo pago no disponía del dinero por lo que decide canjear lo acordado por 2 pagos a 3 y 5 meses; donde el primer pago equivale al 25% más del segundo; si está sujeto a una tes del 20%  calcular el pago único pactado y luego el valor de los dos pagos por el refinanciamiento.
  1. Una persona debe cuatro pagarés de 10,000; 40,000; 30,000 y 15,000 a 2, 4, 15 y 18 meses sometidos a una tasa nominal trimestral de 36%. Sin embargo, transcurridos 6 meses decide cancelar 18,000 y el saldo en 8 meses. Determinar el valor del pago único.
  1. Una persona debe 5 pagarés de 18,000; 20,000; 12,000; 10,000 y 6,000 a 2, 5, 12, 18 y 21 meses sujetos a una tasa nominal bimestral anual del 30%, al cabo de 6 meses, decide REFINANCIAR LA DEUDA en pagos a 4 y 10 meses donde el primero equivale al 75% del segundo a una tasa  efectiva cuatrimestral del 18%. Determinar el valor de los pagos.

...

Descargar como (para miembros actualizados) txt (4 Kb) pdf (59 Kb) docx (15 Kb)
Leer 4 páginas más »
Disponible sólo en Clubensayos.com