ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

QUE ES Y QUE FUNCION TIENE UNA ENCRIPTACION WEP

tonysgold25 de Julio de 2012

4.610 Palabras (19 Páginas)906 Visitas

Página 1 de 19

QUE ES Y QUE FUNCION TIENE UNA ENCRIPTACION WEP.

Una encriptación WEP (Wired Equivalent Privacy o Privacidad Equivalente a Cableado) es un tipo de cifrado, implementado en el protocolo de conexión Wifi 802.11, que se encarga de cifrar la información que vamos a transmitir entre dos puntos de forma que solo la sea posible tener acceso a ellos e interpretarlos a aquellos puntos que tengan la misma clave.

En general, un router Wifi o un Access Point solo va a permitir el acceso a aquellos terminales que tengan la misma clave de encriptación WEP.

Esta clave puede ser de tres tipos:

Clave WEP de 64 bits.-, 5 Caracteres o 10 dígitos hexadecimales (''0 a 9'' ''A a F'', precedidos por la cadena ''0x'').

Clave WEP de 128 bits.-, 13 Caracteres o 26 dígitos hexadecimales (''0 a 9'' ''A a F'', precedidos por la cadena ''0x'').

Clave WEP de 256 bits.-, 29 Caracteres o 58 dígitos hexadecimales (''0 a 9'' ''A a F'', precedidos por la cadena ''0x'').

La que más se suele usar es la de 128 bits, que ofrece un bien nivel de protección sin ser excesivamente larga y complicada.

La encriptación WEP de 256 bits no es soportada por muchos dispositivos.

Una clave de encriptación WEP se puede descifrar (existen programas para ello), pero para esto es necesario un tráfico ininterrumpido de datos durante un tiempo determinado (por cierto, bastantes datos y bastante tiempo).

Evidentemente, cuanto mayor sea el nivel de encriptación y más complicada sea la clave más difícil va a ser de descifrar.

No se tarda lo mismo (a igualdad volumen de datos y tiempo) en descifrar la clave de una encriptación WEP de 64 bits que una de 128 bits, no existiendo además entre ambos una relación aritmética, es decir, que no se tarda el doble en descifrar una clave de encriptación WEP de 128 bits que una de 64 bits.

A pesar de que es posible descifrar estas claves de encriptación, no debemos pensar que sea fácil ni rápido. Una buena clave de encriptación WEP de 128 bits (por no decir una de 256 bits) puede llegar a ser prácticamente indescifrable si nos hemos asegurado de que sea lo suficientemente complicada.

La mayoría de los programas para descifrar claves están basados en una serie de secuencias más o menos lógicas con las que empieza a atacar a nuestro sistema hasta entrar en el. Evidentemente, una clave del tipo 1234567890 tarda segundos en ser localizada, pero a nadie se le ocurre (o se le debería ocurrir) poner esta clave.

Debemos evitar claves que contengan secuencias relacionadas con nosotros (fechas, nombres, lugares), así como frases típicas, ya que es lo primero que intentan este tipo de programas. Esto no solo es válido para una clave WEP, sino para cualquier tipo de clave que pongamos. También debemos evitar claves fáciles, como secuencias consecutivas de teclas o números.

Para mayor seguridad es muy aconsejable siempre que sea posible activar el filtrado de direcciones MAC.

Una dirección MAC (Media Access Control address) es un identificador hexadecimal de 48 bits. Esta dirección es única para cada dispositivo, no siendo un parámetro modificable por el usuario (cada tarjeta o interfaz de red tiene su propia dirección MAC, establecida por el fabricante).

Wired Equivalent Privacy

De Wikipedia, la enciclopedia libre

Saltar a navegación, búsqueda

WEP, acrónimo de Wired Equivalent Privacy o "Privacidad Equivalente a Cableado", es el sistema de cifrado incluido en el estándar IEEE 802.11 como protocolo para redes Wireless que permite cifrar la información que se transmite. Proporciona un cifrado a nivel 2, basado en el algoritmo de cifrado RC4 que utiliza claves de 64 bits (40 bits más 24 bits del vector de iniciación IV) o de 128 bits (104 bits más 24 bits del IV). Los mensajes de difusión de las redes inalámbricas se transmiten por ondas de radio, lo que los hace más susceptibles, frente a las redes cableadas, de ser captados con relativa facilidad. Presentado en 1999, el sistema WEP fue pensado para proporcionar una confidencialidad comparable a la de una red tradicional cableada.

Comenzando en 2001, varias debilidades serias fueron identificadas por analistas criptográficos. Como consecuencia, hoy en día una protección WEP puede ser violada con software fácilmente accesible en pocos minutos. Unos meses más tarde el IEEE creó la nueva corrección de seguridad 802.11i para neutralizar los problemas. Hacia 2003, la Alianza Wi-Fi anunció que WEP había sido reemplazado por Wi-Fi Protected Access (WPA). Finalmente en 2004, con la ratificación del estándar completo 802.11i (conocido como WPA2), el IEEE declaró que tanto WEP-40 como WEP-104 fueron revocados por presentar fallos en su propósito de ofrecer seguridad. A pesar de sus debilidades, WEP sigue siendo utilizado, ya que es a menudo la primera opción de seguridad que se presenta a los usuarios por las herramientas de configuración de los routers aún cuando sólo proporciona un nivel de seguridad que puede disuadir del uso sin autorización de una red privada, pero sin proporcionar verdadera protección. Fue desaprobado como un mecanismo de privacidad inalámbrico en 2004, pero todavía está documentado en el estándar actual.

WEP es a veces interpretado erróneamente como Wireless Encryption Protocol.

WEP

2.1 Características y funcionamiento

WEP (Wired Equivalent Privacy, privacidad equivalente al cable) es el algoritmo opcional de seguridad incluido en la norma IEEE 802.11 [2]. Los objetivos de WEP, según el estándar, son proporcionar confidencialidad, autentificación y control de acceso en redes WLAN [2, §6.1.2]. Estudiamos a continuación las principales características de WEP.

WEP utiliza una misma clave simétrica y estática en las estaciones y el punto de acceso. El estándar no contempla ningún mecanismo de distribución automática de claves, lo que obliga a escribir la clave manualmente en cada uno de los elementos de red. Esto genera varios inconvenientes. Por un lado, la clave está almacenada en todas las estaciones, aumentando las posibilidades de que sea comprometida. Y por otro, la distribución manual de claves provoca un aumento de mantenimiento por parte del administrador de la red, lo que conlleva, en la mayoría de ocasiones, que la clave se cambie poco o nunca.

El algoritmo de encriptación utilizado es RC4 con claves (seed), según el estándar, de 64 bits. Estos 64 bits están formados por 24 bits correspondientes al vector de inicialización más 40 bits de la clave secreta. Los 40 bits son los que se deben distribuir manualmente. El vector de inicialización (IV), en cambio, es generado dinámicamente y debería ser diferente para cada trama. El objetivo perseguido con el IV es cifrar con claves diferentes para impedir que un posible atacante pueda capturar suficiente tráfico cifrado con la misma clave y terminar finalmente deduciendo la clave. Como es lógico, ambos extremos deben conocer tanto la clave secreta como el IV. Lo primero sabemos ya que es conocido puesto que está almacenado en la configuración de cada elemento de red. El IV, en cambio, se genera en un extremo y se envía en la propia trama al otro extremo, por lo que también será conocido. Observemos que al viajar el IV en cada trama es sencillo de interceptar por un posible atacante.

El algoritmo de encriptación de WEP es el siguiente:

Se calcula un CRC de 32 bits de los datos. Este CRC-32 es el método que propone WEP para garantizar la integridad de los mensajes (ICV, Integrity Check Value).

Se concatena la clave secreta a continuación del IV formado el seed.

El PRNG (Pseudo-Random Number Generator) de RC4 genera una secuencia de caracteres pseudoaleatorios (keystream), a partir del seed, de la misma longitud que los bits obtenidos en el punto 1.

Se calcula la O exclusiva (XOR) de los caracteres del punto 1 con los del punto 3. El resultado es el mensaje cifrado.

Se envía el IV (sin cifrar) y el mensaje cifrado dentro del campo de datos (frame body) de la trama IEEE 802.11.

El algoritmo para descifrar es similar al anterior. Debido a que el otro extremo conocerá el IV y la clave secreta, tendrá entonces el seed y con ello podrá generar el keystream. Realizando el XOR entre los datos recibidos y el keystream se obtendrá el mensaje sin cifrar (datos y CRC-32). A continuación se comprobara que el CRC-32 es correcto.

2.2 Debilidad del vector de inicialización

La implementación del vector de inicialización (IV) en el algoritmo WEP tiene varios problemas de seguridad. Recordemos que el IV es la parte que varía de la clave (seed) para impedir que un posible atacante recopile suficiente información cifrada con una misma clave.

Sin embargo, el estándar 802.11 no especifica cómo manejar el IV. Según [2, §8.2.3] se indica que debería cambiarse en cada trama para mejorar la privacidad, pero no obliga a ello. Queda abierta a los fabricantes la cuestión de cómo variar el IV en sus productos. La consecuencia de esto es que buena parte de las implementaciones optan por una solución sencilla: cada vez que arranca la tarjeta de red, se fija el IV a 0 y se incrementa en 1 para cada trama. Y esto ocasiona que los primeras combinaciones de IVs y clave secreta se repitan muy frecuentemente.

...

Descargar como (para miembros actualizados) txt (28 Kb)
Leer 18 páginas más »
Disponible sólo en Clubensayos.com