ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Sistemas Numericos


Enviado por   •  20 de Noviembre de 2014  •  2.014 Palabras (9 Páginas)  •  209 Visitas

Página 1 de 9

Sistemas Numéricos :

Binario : El sistema binario, en ciencias e informática, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es el que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario (encendido 1, apagado 0).

Octal: El sistema de numeración octal es un sistema de numeración en base 8, una base que es potencia exacta de 2 o de la numeración binaria. Esta característica hace que la conversión a binario o viceversa sea bastante simple. El sistema octal usa 8 dígitos (0, 1, 2, 3, 4, 5, 6, 7) y tienen el mismo valor que en el sistema de numeración decimal.

Decimal: El sistema de numeración decimal, también llamado sistema decimal, es un sistema de numeración posicional en el que las cantidades se representan utilizando como base aritmética las potencias del número diez. El conjunto de símbolos utilizado (sistema de numeración arábiga) se compone de diez cifras diferentes: cero (0); uno (1); dos (2); tres (3); cuatro (4); cinco (5); seis (6); siete (7); ocho (8) y nueve(9).

Hexadecimal: Otro modo de manejar números binarios es con el uso del sistema de numeración hexadecimal. Este sistema es de base 16, lo que significa que para cada columna es posible escoger uno de entre 16 dígitos. Éstos son O, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F. Para contar en el sistema hexadecimal se inicia en la primera columna a la izquierda del punto hexadecimal y se cuenta desde O hasta F. Una vez que se llena la primera columna, se pone en cero a ella y se suma uno a la segunda columna. Después del 18, 19, lA, 1B, 1C, 1D, lE, lF siguen el 20, 21, y así sucesivamente. Después del 9FFF sigue el A000, etc.

Conversión de un numero decimal a binario.

Para esta transformación es necesario tener en cuenta los pasos que mostraremos en el siguiente ejemplo: Transformemos el numero 42 a numero binario

1. Dividimos el numero 42 entre 2

2. Dividimos el cociente obtenido por 2 y repetimos el mismo procedimiento hasta que el cociente sea 1.

3. El numero binario lo formamos tomando el primer dígito el ultimo cociente, seguidos por los residuos obtenidos en cada división, seleccionándolos de derecha a izquierda, como se muestra en el siguiente esquema.

Conversión de un numero decimal fraccionario a un numero binario.

Para transformar un número decimal fraccionario a un numero binario debemos seguir los pasos que mostramos en el siguiente ejemplo: transformemos el numero 42,375.

1. la parte entera se transforma de igual forma que el ejemplo anterior.

2. La parte fraccionaria de la siguiente manera:

Multiplicamos por el numero 2 y tomamos la parte entera del producto que ira formando el numero binario correspondiente

Tomamos nuevamente la parte entera del producto, y la parte fraccionaria la multiplicamos sucesivamente por 2 hasta llegar a 0

Tomamos nuevamente la parte entera , y como la parte fraccionaria es 0, indica que se ha terminado el proceso. El numero binario correspondiente a la parte decimal será la unión de todas las partes enteras, tomadas de las multiplicaciones sucesivas realizadas durante el transcurso del proceso , en donde el primer dígito binario corresponde a la primera parte entera , el segundo dígito a la segunda parte entera , y así sucesivamente hasta llegar al ultimo .Luego tomamos el numero binario , correspondiente a la parte entera , y el numero binario , correspondiente a la parte fraccionaria y lo unimos en un solo numero binario correspondiente a el numero decimal.

CONVERSIÓN DE UN NUMERO DECIMAL A OCTAL

Para convertir un numero en el sistema decimal al sistema de numeración Octal, debemos seguir los pasos que mostraremos en el siguiente ejemplo Convertir el numero decimal 323.625 a el sistema de numeración Octal

1. Se toma el numero entero y se divide entre 8 repetidamente hasta que el dividendo sea menor que el divisor, para colocar entonces el numero 0 y pasar el dividendo a formar el primer dígito del numero equivalente en decimal

2. Se toma la parte fraccionaria del numero decimal y la multiplicamos por 8 sucesivamente hasta que el producto no tenga números fraccionarios

3. Pasamos la parte entera del producto a formar el dígito correspondiente

4. Al igual que los demás sistemas , el número equivalente en el sistema decimal , esta formado por la unión del numero entero equivalente y el numero fraccionario equivalente

CONVERSIÓN DE UN NUMERO OCTAL A BINARIO

La ventaja principal del sistema de numeración Octal es la facilidad conque pueden realizarse la conversión entre un numero binario y octal. A continuación mostraremos un ejercicio que ilustrará la teoría. Por medio de este tipo de conversiones, cualquier numero Octal se convierte a binario de manera individual. En este ejemplo, mostramos claramente el equivalente 100 111 010 en binario de cada numero octal de forma individua

CONVERSIÓN DE UN NUMERO DECIMAL A UN NUMERO HEXADECIMAL

Convertir el numero 250.25 a Hexadecimal

1. Se toma la parte entera y se divide sucesivamente por el numero decimal 16 (base) hasta que el cociente sea 0

2. Los números enteros resultantes de los cocientes, pasarán a conformar el numero hexadecimal correspondiente, teniendo en cuenta que el sistema de numeración hexadecimal posee solo 16 símbolos, donde los números del 10 hasta el 15 tienen símbolos alfabéticos que ya hemos explicado

3. La parte fraccionaria del numero a convertir se multiplica por 16 (Base) sucesivamente hasta que el producto resultante no tenga parte fraccionaria

4. Al igual que en los sistemas anteriores, el numero equivalente se forma, de la unión de los dos números equivalentes, tanto entero como fraccionario, separados por un punto que establece la diferencia entre ellos.

CONVERSIÓN DE UN NUMERO HEXADECIMAL A UN NUMERO DECIMAL

Como en los ejemplos anteriores este también nos ayudará a entender mejor este procedimiento: Convertir el numero hexadecimal 2B6 a su equivalente decimal.

1. Multiplicamos el valor de posición de cada columna por el dígito hexadecimal correspondiente.

2. El resultado del número decimal equivalente se obtiene, sumando todos los productos obtenidos en el paso anterior.

Compuertas Lógicas.

Una puerta lógica, o compuerta lógica, es un dispositivo electrónico con una función booleana. Suman, multiplican, niegan o afirman, incluyen o excluyen según sus propiedades lógicas. Se pueden aplicar a tecnología electrónica, eléctrica, mecánica, hidráulica y neumática. Son circuitos de conmutación integrados en un chip.

Claude Elwood Shannon experimentaba con relés o interruptores electromagnéticos para conseguir las condiciones de cada compuerta lógica, por ejemplo, para la función booleana Y (AND) colocaba interruptores en circuito serie, ya que con uno solo de éstos que tuviera la condición «abierto», la salida de la compuerta Y sería = 0, mientras que para la implementación de una compuerta O (OR), la conexión de los interruptores tiene una configuración en circuito paralelo.

La tecnología microelectrónica actual permite la elevada integración de transistores actuando como conmutadores en redes lógicas dentro de un pequeño circuito integrado. El chip de la CPU es una de las máximas expresiones de este avance tecnológico.

En nanotecnología se está desarrollando el uso de una compuerta lógica molecular, que haga posible la miniaturización de circuitos.

Compuerta And :

La puerta lógica Y, más conocida por su nombre en inglés AND (AND≡Y≡∧), realiza la función booleana de producto lógico. Su símbolo es un punto (•), aunque se suele omitir. Así, el producto lógico de las variables A y B se indica como AB, y se lee A y B o simplemente A por B.

La ecuación característica que describe el comportamiento de la puerta AND es:

F=(A)∗(B)

Compuerta Or :

La puerta lógica O, más conocida por su nombre en inglés OR (OR≡O≡∨), realiza la operación de suma lógica.

La ecuación característica que describe el comportamiento de la puerta OR es:

F=A+B

Compuerta Not :

La puerta lógica NO (NOT en inglés) realiza la función booleana de inversión o negación de una variable lógica. Una variable lógica A a la cual se le aplica la negación se pronuncia como "no A" o "A negada".

La ecuación característica que describe el comportamiento de la puerta NOT es:

F=A¯

Compuerta Nand :

La puerta lógica NO-Y, más conocida por su nombre en inglés NAND, realiza la operación de producto lógico negado. En ocasiones es llamada también barra de Sheffer1 .

La ecuación característica que describe el comportamiento de la puerta NAND es:

F=AB¯¯=A¯+B¯

Compuerta Nor :

La puerta lógica NO-O, más conocida por su nombre en inglés NOR, realiza la operación de suma lógica negada. En ocasiones es llamada también barra de Pierce2

La ecuación característica que describe el comportamiento de la puerta NOR es:

F=A+B¯¯=A¯∗B¯

Compuerta Xnor :

La puerta lógica equivalencia, realiza la función booleana AB+~A~B. Su símbolo es un punto (•) inscrito en un círculo.

La ecuación característica que describe el comportamiento de la puerta XNOR es:

F=A+B

Compuerta Exor :

La puerta lógica OR-exclusiva, más conocida por su nombre en inglés XOR, realiza la función booleana A'B+AB'. Su símbolo es ⊕ (signo más "+" inscrito en un círculo).

La ecuación característica que describe el comportamiento de la puerta XOR es:

F=A+B

F=AB+AB

Funcion Logica de las puertas :

And :

Cada compuerta tiene dos variables de entrada designadas por A y B y una salida binaria designada por x.

La compuerta AND produce la multiplicación lógica AND: esto es: la salida es 1 si la entrada A y la entrada B están ambas en el binario 1: de otra manera, la salida es 0.

Estas condiciones también son especificadas en la tabla de verdad para la compuerta AND. La tabla muestra que la salida x es 1 solamente cuando ambas entradas A y B están en 1.

El símbolo de operación algebraico de la función AND es el mismo que el símbolo de la multiplicación de la aritmética ordinaria (*).

Las compuertas AND pueden tener más de dos entradas y por definición, la salida es 1 si todas las entradas son 1.

Or:

La compuerta OR produce la función sumadora, esto es, la salida es 1 si la entrada A o la entrada B o ambas entradas son 1; de otra manera, la salida es 0.

El símbolo algebraico de la función OR (+), es igual a la operación de aritmética de suma.

Las compuertas OR pueden tener más de dos entradas y por definición la salida es 1 si cualquier entrada es 1.

Not :

El circuito NOT es un inversor que invierte el nivel lógico de una señal binaria. Produce el NOT, o función complementaria. El símbolo algebraico utilizado para el complemento es una barra sobra el símbolo de la variable binaria.

Si la variable binaria posee un valor 0, la compuerta NOT cambia su estado al valor 1 y viceversa.

El círculo pequeño en la salida de un símbolo gráfico de un inversor designa un inversor lógico. Es decir cambia los valores binarios 1 a 0 y viceversa.

Nand :

Es el complemento de la función AND, como se indica por el símbolo gráfico, que consiste en una compuerta AND seguida por un pequeño círculo (quiere decir que invierte la señal).

La designación NAND se deriva de la abreviación NOT - AND. Una designación más adecuada habría sido AND invertido puesto que es la función AND la que se ha invertido.

Las compuertas NAND pueden tener más de dos entradas, y la salida es siempre el complemento de la función AND.

Nor :

La compuerta NOR es el complemento de la compuerta OR y utiliza el símbolo de la compuerta OR seguido de un círculo pequeño (quiere decir que invierte la señal). Las compuertas NOR pueden tener más de dos entradas, y la salida es siempre el complemento de la función OR.

Xor :

Es OR EXclusiva en este caso con dos entradas (puede tener más) y lo que hará con ellas será una suma lógica entre a por b invertida y a invertida por b.*Al ser O Exclusiva su salida será 1 si una y sólo una de sus entradas es 1*

Exor :

Es simplemente la inversión de la compuerta OR-EX, los resultados se pueden apreciar en la tabla de verdad, que bien podrías compararla con la anterior y notar la diferencia, el símbolo que la representa lo tienes en el siguiente gráfico.

...

Descargar como  txt (12.5 Kb)  
Leer 8 páginas más »
txt