ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Tecnologia De Los Materiales


Enviado por   •  28 de Febrero de 2014  •  3.522 Palabras (15 Páginas)  •  1.602 Visitas

Página 1 de 15

INSTITUTO TECNOLÓGICO DE PACHUCA

PROFESOR:

ING. MUÑOZ LEYVA ISMAEL BERTIN TERESO

ALUMNO:

Abner adair arenas castillo

NO. DE CONTROL:

MATERIA:

TECNOLOGÍA DE LOS MATERIALES

TEMA:

CONDUCCIÓN ELÉCTRICA DE LOS MATERIALES (UNIDAD II)

CARRERA:

INGENIERÍA ELÉCTRICA

UNIDAD II: CONDUCCIÓN ELÉCTRICA DE LOS MATERIALES.

La unidad comprende:

2.1. El papel de los electrones.

2.2. Movimiento electrónico

2.3. Dependencia estructural de la resistencia.

CUESTIONARIO

GLOSARIO

BIBLIOGRAFÍA DE LA UNIDAD II

INTRODUCCIÓN

La conducción eléctrica es el movimiento de partículas eléctricamente cargadas a través de un medio de transmisión (conductor eléctrico). El movimiento de las cargas constituye una corriente eléctrica. El transporte de las cargas puede ser a consecuencia de la existencia de un campo eléctrico, o debido a un gradiente de concentración en la densidad de carga, o sea, por difusión. Los parámetros físicos que gobiernan este transporte dependen del material en el que se produzca.

La conducción en metales y resistencias está bien descrita por la Ley de Ohm, que establece que la corriente es proporcional al campo eléctrico aplicado. Se calcula la conductividad σ para caracterizar la facilidad con la que aparece en un material una densidad de corriente (corriente por unidad de área) j, definida como:

j = σ E

o por su recíproco la resistividad ρ:

j = E / ρ

La conducción en dispositivos semiconductores puede darse debido a una combinación de campo eléctrico (deriva) y de difusión. La densidad de corriente es entonces

j = σ E + D ∇qn

siendo q la carga eléctrica elemental y n la densidad de electrones. Los portadores se mueven en la dirección de decrecimiento de la concentración, de manera que para los electrones una corriente positiva es resultado de una gradiente de densidad positivo. Si los portadores son "huecos", cámbiese la densidad de electrones n por el negativo de la densidad de huecos p.

En los materiales linealmente anisótropos, σ, ρ y D son tensores.

2.1. El papel de los electrones.

Propiedades Químicas De Los Metales

Es característico de los metales tener valencias positivas en la mayoría de sus compuestos. Esto significa que tienden a ceder electrones a los átomos con los que se enlazan. También tienden a formar óxidos básicos. Por el contrario, elementos no metálicos como el nitrógeno, azufre y cloro tienen valencias negativas en la mayoría de sus compuestos, y tienden a adquirir electrones y a formar óxidos ácidos.

Los metales tienen energía de ionización baja: reaccionan con facilidad perdiendo electrones para formar iones positivos o cationes. De este modo, los metales forman sales como cloruros, sulfuros y carbonatos, actuando como agentes reductores (donantes de electrones).

Estructura Electrónica

En sus primeros esfuerzos para explicar la estructura electrónica de los metales, los científicos esgrimieron las propiedades de su buena conductividad térmica y eléctrica para apoyar la teoría de que los metales se componen de átomos ionizados, cuyos electrones libres forman un 'mar' homogéneo de carga negativa. La atracción electrostática entre los iones positivos del metal y los electrones libres, se consideró la responsable del enlace entre los átomos del metal. Así, se pensaba que el libre movimiento de los electrones era la causa de su alta conductividad eléctrica y térmica. La principal objeción a esta teoría es que en tal caso los metales debían tener un calor específico superior al que realmente tienen.

En 1928, el físico alemán Arnold Sommerfeld sugirió que los electrones en los metales se encuentran en una disposición cuántica en la que los niveles de baja energía disponibles para los electrones se hallan casi completamente ocupados. En el mismo año, el físico suizo estadounidense Felix Bloch, y más tarde el físico francés Louis Brillouin, aplicaron esta idea en la hoy aceptada 'teoría de la banda' para los enlaces en los sólidos metálicos.

Conductor eléctrico:

Cualquier material que ofrezca poca resistencia al flujo de electricidad. La diferencia entre un conductor y un aislante, que es un mal conductor de electricidad o de calor, es de grado más que de tipo, ya que todas las sustancias conducen electricidad en mayor o en menor medida. Un buen conductor de electricidad, como la plata o el cobre, puede tener una conductividad mil millones de veces superior a la de un buen aislante, como el vidrio o la mica. El fenómeno conocido como superconductividad se produce cuando al enfriar ciertas sustancias a una temperatura cercana al cero absoluto su conductividad se vuelve prácticamente infinita. En los conductores sólidos la corriente eléctrica es transportada por el movimiento de los electrones; y en disoluciones y gases, lo hace por los iones.

Electrones de conducción y huecos:

Entre los semiconductores comunes se encuentran elementos químicos y compuestos, como el silicio, el germanio, el selenio, el arseniuro de galio, el seleniuro de cinc y el telururo de plomo. El incremento de la conductividad provocado por los cambios de temperatura, la luz o las impurezas se debe al aumento del número de electrones conductores que transportan la corriente eléctrica.

...

Descargar como (para miembros actualizados)  txt (22.9 Kb)  
Leer 14 páginas más »
Disponible sólo en Clubensayos.com