Como costear un producto nuevo.
cpdaenApuntes27 de Octubre de 2016
1.098 Palabras (5 Páginas)396 Visitas
PRUEBA DE HIPOTESIS
HIPOTESIS ESTADISTICA.
Una hipótesis puede definirse como una solución provisional (tentativa) para un problema dado. El nivel de verdad que se le asigne a tal hipótesis dependerá de la medida en que los datos empíricos recogidos apoyen lo afirmado en la hipótesis. Esto es lo que se conoce como contrastación empírica de la hipótesis o bien proceso de validación de la hipótesis. Este proceso puede realizarse de uno o dos modos: mediante confirmación (para las hipótesis universales) o median te verificación (para las hipótesis existenciales). En general, en un trabajo de investigación se plantean dos hipótesis mutuamente excluyentes: la hipótesis nula o hipótesis de nulidad ( ) y la hipótesis de investigación. Además, es posible plantear hipótesis alternas o hipótesis alternativas. El análisis estadístico de los datos servirá para determinar si se puede o no aceptar Ho. Cuando se rechaza Ho, significa que el factor estudiado ha influido significativamente en los resultados y es información relevante para apoyar la hipótesis de investigación planteada. Es muy importante tener presente que la hipótesis de investigación debe coincidir con la hipótesis alternativa. Plantear hipótesis de investigación que coincidan con Ho supondría una aplicación incorrecta del razonamiento estadístico. Las hipótesis son proposiciones provisionales y exploratorias y, por tanto, su valor de veracidad o falsedad depende críticamente de las pruebas empíricas. En este sentido, la replicabilidad de los resultados es fundamental para confirmar una hipótesis como solución de un problema. La hipótesis es el elemento que condiciona el diseño de la investigación y responde provisionalmente al problema, verdadero motor de la investigación. El propósito de la prueba de hipótesis es determinar si el valor supuesto (hipotético de un parámetro poblacional, como la medida de la población, debe aceptarse como verosímil con base en evidencia muéstrales. Recuerda que sobre la distribución de muestreo, se dijo que, en general, una media muestral diferirá en valor de la media poblacional. Si el valor observado de una estadística muestral, como la media muestral, el valor de la media poblacional. Si el valor observado de una estadística muestral, se acerca al valor para métrico supuesto y solo difiere de él en un monto que cabría esperar del muestreo aleatorio, el valor hipotético no se rechaza. Si la estadística muestral difiere de la supuesta en un monto que no es posible atribuir al azar, la hipótesis se rechaza por inverosímil. Se han desarrollado tres procedimientos distintos para la prueba de hipótesis, todos los cueles conducen a las mismas decisiones cuando se emplean los mismos estándares de probabilidad (y riesgo). En este capítulo describiremos primeramente el método del valor crítico para la prueba de hipótesis. De acuerdo con este método, se determinan los así llamados valores críticos de la estadística de prueba que dictarían el rechazo de una hipótesis, tras de lo cual la estadística de prueba observada se compara con los valores críticos. Este fue el primer método en desarrollarse, motivo por la cual buena parte de la terminología de las pruebas de hipótesis se derivan de él. Más recientemente, el método del valor P ha cobrado popularidad a causa de ser el más fácilmente aplicable a software de computo. Este método se basa en la determinación de la probabilidad condicional de que el valor observado de una estadística muestral pueda ocurrir al zar, dado que su supuesto particular sobre el valor del parámetro poblacional asociado sea en efecto correcto. Finalmente, el método d intervalos de confianza se basa en la observación de si el valor supuesto de un parámetro poblacional está incluido en el rango de valores que define a un intervalo de confianza para ese parámetro.
ERROR TIPO I Y II
El error tipo I se define como el rechazo de la hipótesis nula Ho cuando ésta es verdadera. También es conocido como ó nivel de significancia. Si tuviéramos un nivel de confianza del 95% entonces el nivel de significancia sería del 5%. Análogamente si se tiene un nivel de confianza del 90% entonces el nivel de significancia sería del 10%. Ahora supóngase que la verdadera rapidez promedio de combustión es diferente de 50 cm/s, aunque la media muestral caiga dentro de la región de aceptación. En este caso se acepta Ho cuando ésta es falsa. Este tipo de conclusión recibe el nombre de error tipo II. El error tipo II o error se define como la aceptación de la hipótesis nula cuando ésta es falsa. Por tanto, al probar cualquier hipótesis estadística, existen cuatro situaciones diferentes que determinan si la decisión final es correcta o errónea.
...