ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Corriente

lancero256Síntesis7 de Mayo de 2015

2.971 Palabras (12 Páginas)137 Visitas

Página 1 de 12

Corriente

La corriente eléctrica o intensidad eléctrica es el flujo de carga eléctrica por unidad de tiempo que recorre un material. 1 Se debe al movimiento de las cargas (normalmente electrones) en el interior del material. En el Sistema Internacional de Unidades se expresa en C/s (culombios sobre segundo), unidad que se denomina amperio. Una corriente eléctrica, puesto que se trata de un movimiento de cargas, produce un campo magnético, un fenómeno que puede aprovecharse en el electroimán.

El instrumento usado para medir la intensidad de la corriente eléctrica es el amperímetro.

Voltaje

El voltaje es una magnitud física, con la cual podemos cuantificar o “medir” la diferencia de potencial eléctrico o la tensión eléctrica entre dos puntos, y es medible mediante un aparato llamado voltímetro.

El símbolo con el cual es representado el voltaje o tensión eléctrica es V, que representa a la unidad de medida que es el voltio o volt. Su nombre, deriva de Alessandro Volta, físico italiano que ingenió en el siglo XVII la pila eléctrica, luego denominada pila voltaica (también en honor a su mentor). Lo que hizo Volta fue “descubrir” los dos materiales que eran capaces de conducir electricidad de manera constante, un problema de la física que acarreaba desde los tiempos de Luigi Galvani, otro físico italiano que comenzó a indagar sobre las posibilidades de generar este tipo de electricidad continua.

Potencia

Es la relación de paso de energía de un flujo por unidad de tiempo; es decir, la cantidad de energía entregada o absorbida por un elemento en un tiempo determinado. La unidad en el Sistema Internacional de Unidades es el vatio (watt).

Cuando una corriente eléctrica fluye en cualquier circuito, puede transferir energía al hacer un trabajo mecánico o termodinámico. Los dispositivos convierten la energía eléctrica de muchas maneras útiles, como calor, luz (lámpara incandescente), movimiento (motor eléctrico), sonido (altavoz) o procesos químicos. La electricidad se puede producir mecánica o químicamente por la generación de energía eléctrica, o también por la transformación de la luz en las células fotoeléctricas. Por último, se puede almacenar químicamente en baterías.

La energía consumida por un dispositivo eléctrico se mide en vatios-hora (Wh), o en kilovatios-hora (kWh). Normalmente las empresas que suministran energía eléctrica a la industria y los hogares, en lugar de facturar el consumo en vatios-hora, lo hacen en kilovatios-hora (kWh). La potencia en vatios (W) o kilovatios (kW) de todos los aparatos eléctricos debe figurar junto con la tensión de alimentación en una placa metálica ubicada, generalmente, en la parte trasera de dichos equipos. En los motores, esa placa se halla colocada en uno de sus costados y en el caso de las bombillas de alumbrado el dato viene impreso en el cristal o en su base.

Energía

Se denomina energía eléctrica a la forma de energía que resulta de la existencia de una diferencia de potencial entre dos puntos, lo que permite establecer una corriente eléctrica entre ambos cuando se los pone en contacto por medio de un conductor eléctrico. La energía eléctrica puede transformarse en muchas otras formas de energía, tales como la energía lumínica o luz, la energía mecánica y la energía térmica

Resistencia

Se le denomina resistencia eléctrica a la igualdad de oposición que tienen los electrones al moverse a través de un conductor. La unidad de resistencia en el Sistema Internacional es el ohmio, que se representa con la letra griega omega (Ω), en honor al físico alemán Georg Ohm, quien descubrió el principio que ahora lleva su nombre.

Para un conductor de tipo cable, la resistencia está dada por la siguiente fórmula:

Donde ρ es el coeficiente de proporcionalidad o la resistividad del material, es la longitud del cable y S el área de la sección transversal del mismo.

La resistencia de un material depende directamente de dicho coeficiente, además es directamente proporcional a su longitud (aumenta conforme es mayor su longitud) y es inversamente proporcional a su sección transversal (disminuye conforme aumenta su grosor o sección transversal).

Descubierta por Georg Ohm en 1827, la resistencia eléctrica tiene un parecido conceptual con la fricción en la física mecánica. La unidad de la resistencia en el Sistema Internacional de Unidades es el ohmio (Ω). Para su medición, en la práctica existen diversos métodos, entre los que se encuentra el uso de un ohmímetro. Además, su cantidad recíproca es la conductancia, medida en Siemens.

Además, de acuerdo con la ley de Ohm la resistencia de un material puede definirse como la razón entre la diferencia de potencial eléctrico y la corriente en que atraviesa dicha resistencia, así:1

Donde R es la resistencia en ohmios, V es la diferencia de potencial en voltios e I es la intensidad de corriente en amperios.

También puede decirse que "la intensidad de la corriente que pasa por un conductor es directamente proporcional a la diferencia de potencial e inversamente proporcional a su resistencia"

Según sea la magnitud de esta medida, los materiales se pueden clasificar en conductores, aislantes y semiconductor. Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el que el valor de la resistencia es prácticamente nulo.

Ley de ohm

La ley de Ohm, postulada por el físico y matemático alemán Georg Simmon Ohm, es una ley de la electricidad. Es una ley válida para los materiales "óhmicos" que son la mayoría de los empleados en componentes eléctricos (si bien existen tipos de materiales y dispositivos que no satisfacen la ley de Ohm).

La ley establece que la diferencia de potencial que aparece entre los extremos de un conductor determinado es proporcional a la intensidad de la corriente que circula por el citado conductor. Ohm completó la ley introduciendo la noción de resistencia eléctrica ; que es el factor de proporcionalidad que aparece en la relación entre e :

La fórmula anterior se conoce como ley de Ohm incluso cuando la resistencia varía con la corriente, y en la misma corresponde a la diferencia de potencial, a la resistencia e a la intensidad de la corriente. Las unidades de esas tres magnitudes en el sistema internacional de unidades son, respectivamente, voltios (V), ohmios (Ω) y amperios (A).

Otras expresiones alternativas, que se obtienen a partir de la ecuación anterior, son:

• válida si 'R' no es nulo

• válida si 'I' no es nula

En los circuitos de alterna senoidal, a partir del concepto de impedancia, se ha generalizado esta ley, dando lugar a la llamada ley de Ohm para circuitos recorridos por corriente alterna, que indica:

Donde corresponde al fasor r corriente, al fasor tensión y a la impedancia.

Fuentes

En electricidad se llama fuente al elemento activo que es capaz de generar una diferencia de potencial entre sus bornes o proporcionar una corriente eléctrica para que otros circuitos funcionen.

Fuentes ideales

Las fuentes ideales son elementos utilizados en la teoría de circuitos para el análisis y la creación de modelos que permitan analizar el comportamiento de componentes electrónicos o circuitos reales. Pueden ser independientes, si sus magnitudes (tensión o corriente) son siempre constantes, o dependientes en el caso de que dependan de otra magnitud (tensión o corriente).

A continuación se dan sus definiciones:

• Fuente de tensión ideal: aquella que genera una d. d. p. entre sus terminales constante e independiente de la carga que alimente. Si la resistencia de carga es infinita se dirá que la fuente está en circuito abierto, y si fuese cero estaríamos en un caso absurdo, ya que según su definición una fuente de tensión ideal no puede estar en cortocircuito.

• Fuente de intensidad ideal: aquella que proporciona una intensidad constante e independiente de la carga que alimente. Si la resistencia de carga es cero se dirá que la fuente está en cortocircuito, y si fuese infinita estaríamos en un caso absurdo, ya que según su definición una fuente de intensidad ideal no puede estar en circuito abierto.

Fuentes reales

A diferencia de las fuentes ideales, la diferencia de potencial que producen o la corriente que proporcionan las fuentes reales, depende de la carga a la que estén conectadas.

Fuentes de tensión

Una fuente de tensión real se puede considerar como una fuente de tensión ideal, en serie con una resistencia Rg, a la que se denomina resistencia interna de la fuente.

Las cargas deberán ser mucho mayores que la resistencia interna de la fuente (al menos diez veces) para conseguir que el valor en sus bornes no difiera mucho del valor en circuito abierto.

La potencia que entrega o consume una fuente se determina multiplicando su voltaje por la corriente que la atraviesa P = V I. Si esta corriente atraviesa a la fuente desde el terminal negativo hacia el positivo entonces diremos que la fuente entrega energía. Si dicha corriente atraviesa a la fuente desde el terminal positivo hacia el negativo entonces la fuente consume energía.

Como ejemplos de fuentes de tensión real podemos enumerar:

• Batería

• Pila

• Fuente de alimentación

• Célula fotoeléctrica

Transductores

Un transductor

...

Descargar como (para miembros actualizados) txt (19 Kb)
Leer 11 páginas más »
Disponible sólo en Clubensayos.com