Derivadas
krack32129 de Abril de 2015
506 Palabras (3 Páginas)268 Visitas
Matematicas Un jugador tiene tres oportunidades de lanzar una moneda para que aparezca una cara, el juego termina en el momento en que cae una cara o después de tres intentos, lo que suceda primero. Si en el primero, segundo o tercer lanzamiento aparece cara el jugador recibe $20000, $40000 o $80000 respectivamente, si no cae cara en ninguno de los tres pierde $200000. Si X representa la ganancia del jugador: a.
Encuentre la función de probabilidad f(x) La probabilidad de que aparezca una cara es 1/2, la probabilidad de que aparezca dos caras seguidas es (1/2)(1/2) = (1/4), la probabilidad de que aparezcan tres caras seguidas es (1/2)(1/2)(1/2) = 1/8, que es la misma probabilidad de que no aparezca una sola cara, por tanto la distribución de probabilidad es:
b.
Encuentre el valor esperado E(x), la varianza V(x) y la desviación estándar S(x). El valor esperado esta definido por
∑
()()()()
La varianza V(x)
[
]∑[
]
()
()
()
()
La desviación estándar
Un jugador tiene tres oportunidades de lanzar una moneda para que aparezca una cara, el juego termina en el momento en que cae una cara o después de tres intentos, lo que suceda primero. Si en el primero, segundo o tercer lanzamiento aparece cara el jugador recibe $20000, $40000 o $80000 respectivamente, si no cae cara en ninguno de los tres pierde $200000. Si X representa la ganancia del jugador: a.
Encuentre la función de probabilidad f(x) La probabilidad de que aparezca una cara es 1/2, la probabilidad de que aparezca dos caras seguidas es (1/2)(1/2) = (1/4), la probabilidad de que aparezcan tres caras seguidas es (1/2)(1/2)(1/2) = 1/8, que es la misma probabilidad de que no aparezca una sola cara, por tanto la distribución de probabilidad es:
b.
Encuentre el valor esperado E(x), la varianza V(x) y la desviación estándar S(x). El valor esperado esta definido por
∑
()()()()
La varianza V(x)
[
]∑[
]
...