ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Derivada

henny1419 de Julio de 2015

3.860 Palabras (16 Páginas)207 Visitas

Página 1 de 16

Derivada

La derivada de la función en el punto marcado equivale a la pendiente de la recta tangente (la gráfica de la función está dibujada en rojo; la tangente a la curva está dibujada en verde).

En matemática, la derivada de una función es una medida de la rapidez con la que cambia el valor de dicha función matemática, según cambie el valor de su variable independiente. La derivada de una función es un concepto local, es decir, se calcula como el límite de la rapidez de cambio media de la función en un cierto intervalo, cuando el intervalo considerado para la variable independiente se torna cada vez más pequeño. Por ello se habla del valor de la derivada de una cierta función en un punto dado.

Un ejemplo habitual aparece al estudiar el movimiento: si una función representa la posición de un objeto con respecto al tiempo, su derivada es la velocidad de dicho objeto. Un avión que realice un vuelo transatlántico de 4500 km entre las 12:00 y las 18:00, viaja a una velocidad media de 750 km/h. Sin embargo, puede estar viajando a velocidades mayores o menores en distintos tramos de la ruta. En particular, si entre las 15:00 y las 15:30 recorre 400 km, su velocidad media en ese tramo es de 800 km/h. Para conocer su velocidad instantánea a las 15:20, por ejemplo, es necesario calcular la velocidad media en intervalos de tiempo cada vez menores alrededor de esta hora: entre las 15:15 y las 15:25, entre las 15:19 y las 15:21, etc.

Entonces el valor de la derivada de una función en un punto puede interpretarse geométricamente, ya que se corresponde con la pendiente de la recta tangente a la gráfica de la función en dicho punto. La recta tangente es a su vez la gráfica de la mejor aproximación lineal de la función alrededor de dicho punto. La noción de derivada puede generalizarse para el caso de funciones de más de una variable con la derivada parcial y el diferencial.

La derivada de una función f en un punto x se denota como f′(x). La función cuyo valor en cada punto x es esta derivada es la llamada función derivada de f, denotada por f′. El proceso de encontrar la derivada de una función se denominadiferenciación, y es una de las herramientas principales en el área de las matemáticas conocida como cálculo infinitesimal. Concretamente, el que trata de asuntos vinculados con la derivada se denomina cálculo diferencial.1

Historia de la derivada[editar]

Los problemas típicos que dieron origen al cálculo infinitesimal, comenzaron a plantearse en la época clásica de la antigua Grecia (siglo III a. C.), pero no se encontraron métodos sistemáticos de resolución hasta veinte siglos después (en el siglo XVII por obra de Isaac Newton y Gottfried Leibniz).

En lo que atañe a las derivadas existen dos conceptos de tipo geométrico que le dieron origen:

• El problema de la tangente a una curva (Apolonio de Perge)

• El Teorema de los extremos: máximos y mínimos (Pierre de Fermat)

En su conjunto dieron origen a lo que modernamente se conoce como cálculo diferencial.

Siglo XVII[editar]

Los matemáticos perdieron el miedo que los griegos le habían tenido a los infinitos: Johannes Kepler y Bonaventura Cavalieri fueron los primeros en usarlos, empezaron a andar un camino que llevaría en medio siglo al descubrimiento del cálculo infinitesimal.

A mediados del siglo XVII las cantidades infinitesimales fueron cada vez más usadas para resolver problemas de cálculos de tangentes, áreas, volúmenes; los primeros darían origen al cálculo diferencial, los otros al integral.

Newton y Leibniz[editar]

Artículos principales: Isaac Newton y Gottfried Leibniz.

A finales del siglo XVII sintetizaron en dos conceptos, métodos usados por sus predecesores los que hoy llamamos «derivadas» e «integrales». Desarrollaron reglas para manipular las derivadas (reglas de derivación) y mostraron que ambos conceptos eran inversos (teorema fundamental del cálculo).

Newton desarrolló en Cambridge su propio método para el cálculo de tangentes. En 1665 encontró un algoritmo para derivar funciones algebraicas que coincidía con el descubierto por Fermat. A finales de 1665 se dedicó a reestructurar las bases de su cálculo, intentando desligarse de los infinitesimales, e introdujo el concepto de fluxión, que para él era la velocidad con la que una variable «fluye» (varía) con el tiempo.

Gottfried Leibniz, por su parte, formuló y desarrolló el cálculo diferencial en 1675. Fue el primero en publicar los mismos resultados que Isaac Newton descubriera 10 años antes. En su investigación conservó un carácter geométrico y trató a la derivada como un cociente incremental y no como una velocidad, viendo el sentido de su correspondencia con la pendiente de la recta tangente a la curva en dicho punto.

Fue quizás el mayor inventor de símbolos matemáticos. A él se deben los nombres de: cálculo diferencial y cálculo integral, así como los símbolos de derivada y el símbolo de la integral ∫.

Conceptos y aplicaciones[editar]

El concepto de derivada es uno de los dos conceptos centrales del cálculo infinitesimal. El otro concepto es la «antiderivada» o integral; ambos están relacionados por el teorema fundamental del cálculo. A su vez, los dos conceptos centrales del cálculo están basados en el concepto de límite, el cual separa las matemáticas previas, como el Álgebra, laTrigonometría o la Geometría Analítica, del Cálculo. Quizá la derivada es el concepto más importante del Cálculo Infinitesimal.

La derivada es un concepto que tiene variadas aplicaciones. Se aplica en aquellos casos donde es necesario medir la rapidez con que se produce el cambio de una magnitud o situación. Es una herramienta de cálculo fundamental en los estudios de Física, Química y Biología, o en ciencias sociales como la Economía y la Sociología. Por ejemplo, cuando se refiere a la gráfica de dos dimensiones de , se considera la derivada como la pendiente de la recta tangente del gráfico en el punto . Se puede aproximar la pendiente de esta tangente como el límite cuando la distancia entre los dos puntos que determinan una recta secante tiende a cero, es decir, se transforma la recta secante en una recta tangente. Con esta interpretación, pueden determinarse muchas propiedades geométricas de los gráficos de funciones, tales comoconcavidad o convexidad.

Algunas funciones no tienen derivada en todos o en alguno de sus puntos. Por ejemplo, una función no tiene derivada en los puntos en que se tiene una tangente vertical, una discontinuidad o un punto anguloso. Afortunadamente, gran cantidad de las funciones que se consideran en las aplicaciones son continuas y su gráfica es una curva suave, por lo que es susceptible de derivación.

Las funciones que son diferenciables (derivables si se habla en una sola variable), son aproximables linealmente.

Definiciones de derivada[editar]

Esquema que muestra los incrementos de la función en x y en y.

En terminología clásica, la diferenciación manifiesta el coeficiente en que una cantidad cambia a consecuencia de un cambio en otra cantidad .

En matemáticas, coeficiente es un factor multiplicativo que pertenece a cierto objeto como una variable, un vector unitario, una función base, etc.

En física, coeficiente es una expresión numérica que mediante alguna fórmula determina las características o propiedades de un cuerpo.

En nuestro caso, observando la gráfica de la derecha, el coeficiente del que hablamos vendría representado en el punto de la función por el resultado de la división representada por la relación , que como puede comprobarse en la gráfica, es un valor que se mantiene constante a lo largo de la línea recta azul que representa la tangente en el punto de la función. Esto es fácil de entender puesto que el triángulo rectángulo formado en la gráfica con vértice en el punto , por mucho que lo dibujemos más grande, al ser una figura proporcional el resultado de es siempre el mismo.

Esta noción constituye la aproximación más veloz a la derivada, puesto que el acercamiento a la pendiente de la recta tangente es tanto por la derecha como por la izquierda de manera simultánea.

Definición como cociente de diferencias[editar]

Recta secante entre f(x) y f(x+h).

La derivada de una función es la pendiente geométrica de la recta tangente del gráfico de en . Sin el concepto que se va a definir, no es posible encontrar directamente la pendiente de la línea tangente a una función dada, porque solamente se conoce un punto en la línea tangente: . La idea es aproximar la línea tangente con múltiples líneas secantes que tienen distancias progresivamente más pequeñas entre los dos puntos que cruzan. Cuando se toma el límite de las pendientes de las líneas secantes de esta progresión, se consigue la pendiente de la línea tangente. Se define, pues, la derivada tomando el límite de la pendiente de las líneas secantes, al acercarlas a la línea tangente.

Para encontrar las pendientes de las líneas secantes próximas, se elige un número relativamente pequeño. representa un cambio relativamente pequeño en , el cual puede ser positivo o negativo. La pendiente de la recta que pasa por los dos puntos y es:

.

Inclinación de la secante de la curva y=f(x).

expresión denominada «cociente de Newton».2

La derivada de en es entonces el límite del valor del cociente diferencial, conforme las líneas secantes se aproximan a la línea tangente:

.

Si la derivada de existe en todos los puntos

...

Descargar como (para miembros actualizados) txt (24 Kb)
Leer 15 páginas más »
Disponible sólo en Clubensayos.com