Ejercicio De Probabilidad
susanmv6 de Mayo de 2015
312 Palabras (2 Páginas)260 Visitas
Se sacan dos bolas de una urna que se compone de una bola blanca, otra roja, otra verde y otra negra. Escribir el espacio muestral cuando:
1La primera bola se devuelve a la urna antes de sacar la segunda.
E = {BB, BR, BV, BN, RB, RR, RV, RN, VB, VR, VV, VN, NB, NR, NV, NN}
2La primera bola no se devuelve.
E = { BR, BV, BN, RB, RV, RN, VB, VR, VN, NB, NR, NV}
2. Una urna tiene 8 bolas rojas, 5 amarilla y 7 verdes. Si se extrae una bola al azar calcular la probabilidad de que: a) sea roja, b) no sea verde.
Solución
a) A: extraer uba bola al azar que sea roja, tiene 8 elementos.
E: espacio muestral, de 20 elementos.
P(A) = 8/20 = 2/5 (definición de probabilidad).
b) B: extraer uba bola al azar que sea verde, tiene 7 elementos
Bc: extraer uba bola al azar que NO sea verde.
P(Bc) = 1 - P(B) = 1 - 7/20 = 13/20 (propiedad 5)
Se extrae una bola de una urna que contiene 4 bolas rojas, 5 blancas y 6 negras, ¿cuál es la probabilidad de que la bola sea roja o blanca? ¿Cuál es la probabilidad de que no sea blanca?
Solución
R: extraer bola roja B: extraer bola blanca
R U B: extraer bola roja o blanca, P(R U B) = P(R) + P(B) = 4/15 + 5/15 = 9/15 = 3/5 (propiedad 1, porque R y B no tienen elementos comunes por lo que son mutuamente excluyentes o incompatibles)
Bc: NO extraer bola blanca, P(Bc) = 1 - P(B) = 1 - 5/15 = 10/15 = 2/5 (propiedad 5)
...