ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Espacio Vectorial Y Sus Propiedades


Enviado por   •  18 de Octubre de 2012  •  416 Palabras (2 Páginas)  •  633 Visitas

Página 1 de 2

ESPACIO VECTORIAL Y SUS PROPIEDADES.

Espacio vectorial

Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios vectoriales se les llama vectores. Sobre los vectores pueden realizarse dos operaciones: escalarse (multiplicarlos por un escalar) y sumarse. Estas dos operaciones se tienen que ceñir a un conjunto de axiomas que generalizan las propiedades comunes de las tuplas de números reales así como de los vectores en el espacio euclídeo. Un concepto importante es el de dimensión.

Históricamente, las primeras ideas que condujeron a los espacios vectoriales modernos se remontan al siglo XVII: geometría analítica, matrices y sistemas de ecuaciones lineales. La primera formulación moderna y axiomática se debe a Giuseppe Peano, a finales del siglo XIX. Los siguientes avances en la teoría de espacios vectoriales provienen del análisis funcional, principalmente de los espacios de funciones. Los problemas de Análisis funcional requerían resolver problemas sobre la convergencia. Esto se hizo dotando a los espacios vectoriales de una adecuada topología, permitiendo tener en cuenta cuestiones de proximidad y continuidad. Estos espacios vectoriales topológicos, en particular losespacios de Banach y los espacios de Hilbert tienen una teoría más rica y complicada.

Los espacios vectoriales tienen aplicaciones en otras ramas de la matemática, la ciencia y laingeniería. Se utilizan en métodos como las series de Fourier, que se utiliza en las rutinas modernas de compresión de imágenes y sonido, o proporcionan el marco para resolver ecuaciones en derivadas parciales. Además, los espacios vectoriales proporcionan una forma abstracta libre de coordenadas de tratar con objetos geométricos y físicos, tales como tensores, que a su vez permiten estudiar las propiedades locales de variedades mediante técnicas de linealización.

PROPIEDADES:

Hay una serie de propiedades que se demuestran fácilmente a partir de los axiomas del espacio vectorial. Algunas de ellas se derivan de la teoría elemental de grupos, aplicada al grupo (aditivo) de vectores: por ejemplo, el vector nulo 0 Є V, y el opuesto -v de un vector v son únicos. Otras propiedades se pueden derivar de la propiedad distributiva, por ejemplo, la multiplicación por el escalar cero da el vector nulo y ningún otro escalar multiplicado por un vector da cero:

Propiedad Significado

Unicidad del vector nulo

Unicidad del opuesto de un vector

Producto por el escalar cero 0 v = 0. El 0 es el único escalar que cumple esta propiedad.

Producto de un escalar

...

Descargar como (para miembros actualizados)  txt (2.7 Kb)  
Leer 1 página más »
Disponible sólo en Clubensayos.com