Factorizacion
nattycortes15 de Octubre de 2012
5.453 Palabras (22 Páginas)650 Visitas
FACTOR COMÚN / EJERCICIOS RESUELTOS
EJEMPLO 1: (Hay factor común entre los números)
8a - 4b + 16c + 12d = 4. (2a - b + 4c + 3d)
El factor común es el número 4: El Máximo Común Divisor entre los números.
EXPLICACIÓN DEL EJEMPLO 1
EJEMPLO 2: (Hay factor común entre las letras)
7x2 + 11x3 - 4x5 + 3x4 - x8 = x2. (7 + 11x - 4x3 + 3x2 - x6)
El factor común es x2.: La x elevada a la menor potencia con que aparece.
EXPLICACIÓN DEL EJEMPLO 2
EJEMPLO 3: (Hay factor común entre los números y entre las letras)
9x3 - 6x2 + 12x5 - 18x7 = 3x2. (3x - 2 + 4x3 - 6x5)
El factor común es 3x2: El MCD entre los números y la x elevada a la menor potencia.
EXPLICACIÓN DEL EJEMPLO 3
EJEMPLO 4: (Con fracciones)
4/3 x - 8/9 x3 + 16/15 x7 - 2/3 x5 = 2/3 x. (2 - 4/3 x2 + 8/5 x6 - x4)
El factor común es 2/3 x: El MCD del numerador sobre el MCD del denominador, y la x a la menor potencia.
EXPLICACIÓN DEL EJEMPLO 4
EJEMPLO 5: (Con varias letras diferentes)
9x2ab - 3xa2b3 + x2az = xa. (9xb - 3ab2 + xz)
El factor común es xa. Las 2 letras que están en todos los términos, con la menor potencia con la que aparecen.
EXPLICACIÓN DEL EJEMPLO 5
EJEMPLO 6: (Con números grandes)
36x4 - 48x6 - 72x3 + 60x5 = 12x3. (3x - 16x3 - 6 + 5x2)
Entre números grandes es más difícil hallar el MCD.
EXPLICACIÓN DEL EJEMPLO 6
PARA AVANZADOS: (Raramente se ve en Nivel Medio)
EJEMPLO 7: (Sacar factor común negativo)
8a - 4b + 16c + 12d = - 4. (- 2a + b - 4c - 3d)
Saco factor común "-4". Todos los términos quedan con el signo contrario al que traían.
EXPLICACIÓN DEL EJEMPLO 7
EJEMPLO 8: (El Factor común es una expresión de más de un término)
(x + 1).3 - 5x. (x + 1) + (x + 1).x2 = (x + 1). (3 - 5x + x2)
(x + 1) está multiplicando en todos los términos. Es factor común.
EXPLICACIÓN DEL EJEMPLO 8
EJEMPLO 9: ("Sacar un número que no es divisor de todos los términos")
3a + 2b - 5c + 9d = 7. (3/7 a + 2/7 b - 5/7 c + 9/7 d)
Divido todos los términos por 7, y quedan números fraccionarios. Esto lo puedo hacer con cualquier número.
EXPLICACIÓN DEL EJEMPLO 9
EJEMPLO 10: (Normalizar un polinomio)
5x4 - 2x3 - 3x + 4 = 5. (x4 - 2/5 x3 - 3/5 x + 4/5)
Normalizar es "quitarle" el número (coeficiente) al término de mayor grado. Por eso divido todo por 5.
EXPLICACIÓN DEL EJEMPLO 10
FACTOR COMÚN EN GRUPOS / EJERCICIOS RESUELTOS
EJEMPLO 1: (Todos los términos son positivos)
4a + 4b + xa + xb =
4.(a + b) + x.(a + b) =
(a + b).(4 + x)
Saco factor común "4" en el primer y segundo término; y factor común "x" en el tercer y cuarto término. Los dos "resultados" son iguales: (a + b). Luego, saco como factor común a (a + b).
EXPLICACIÓN DEL EJEMPLO 1
EJEMPLO 2: ("Resultado desordenado")
4a + 4b + xb + xa =
4.(a + b) + x.(b + a) =
4.(a + b) + x.(a + b) =
(a + b).(4 + x)
En el primer paso el "resultado" quedó "desordenado": (b + a). Pero puedo cambiar el orden de los términos, ya que (b + a) es igual que (a + b)
EXPLICACIÓN DEL EJEMPLO 2
EJEMPLO 3: (Con términos negativos)
4a - 4b + xa - xb =
4.(a - b) + x.(a - b) =
(a - b).(4 + x)
Si los "resultados" quedan iguales no hay problema.
EXPLICACIÓN DEL EJEMPLO 3
EJEMPLO 4: (Con términos negativos y "Resultado desordenado")
4a - 4b - xb + xa =
4.(a - b) + x.(-b + a) =
4.(a - b) + x.(a - b) =
(a - b).(4 + x)
En el primer paso quedó desordenado, pero luego puedo cambiar el orden de los términos, ya que (- b + a) es igual que (a - b)
EXPLICACIÓN DEL EJEMPLO 4
EJEMPLO 5: (Resultados "opuestos")
4a - 4b - xa + xb =
4.(a - b) + x.(-a + b) =
4.(a - b) - x.(a - b) =
(a - b).(4 - x)
En el primer paso quedaron los signos opuestos para los dos términos. Pero en el segundo paso, "saco el menos afuera y hago un cambio de signos" (lo que en realidad es Sacar Factor Común negativo)
EXPLICACIÓN DEL EJEMPLO 5
EJEMPLO 6: (Resultados "opuestos" y "desordenados")
4a - 4b + xb - xa =
4.(a - b) + x.(b - a) =
4.(a - b) - x.(-b + a) =
4.(a - b) - x.(a - b) =
(a - b).(4 - x)
Luego de agrupar, los resultados quedan desordenados, y con el signo opuesto cada término. En el segundo paso, "saco el menos afuera y hago un cambio de signos" (como en el Ejemplo 5); y en el tercer paso cambio el orden de los términos, ya que (- b + a) es igual que (a - b)
EXPLICACIÓN DEL EJEMPLO 6
EJEMPLO 7: (Todos los términos son negativos)
-4a - 4b - xa - xb =
-4.(a + b) - x.(a + b) =
(a + b).(-4 - x)
En estos casos es casi mejor sacar directamente Factor Común negativo (¿Cómo sacar Factor Común negativo?) Y sino también, en la "EXPLICACIÓN", también muestro cómo se haría sacando Factor Común positivo.
EXPLICACIÓN DEL EJEMPLO 7
EJEMPLO 8: (Agrupando términos no consecutivos)
4x2a + 3y + 12ax + yx =
4ax.(x + 3) + y.(3 + x) =
4ax.(x + 3) + y.(x + 3) =
(x + 3).(4ax + y)
No siempre podemos agrupar en el orden en que viene el ejercicio. Tiene que haber Factor Común entre los que agrupamos, y el "resultado" debe dar igual (o desordenado u opuesto, como se ve en los ejemplo anteriores).
En este caso tuve que agrupar primero con tercero y segundo con cuarto.
EXPLICACIÓN DEL EJEMPLO 8
EJEMPLO 9: (Polinomio de 6 términos)
4a - 7x2a + ya + 4z - 7x2z + yz =
a.(4 - 7x2 + y) + z.(4 - 7x2 + y) =
(4 - 7x2 + y).(a + z)
Aquí hay 6 términos, y dos maneras posibles de agrupar: 2 grupos de 3 términos, o 3 grupos de 2 términos. En este caso agrupé de a 3 términos. (Para verlo también de la otra forma, consultar en la EXPLICACIÓN)
EXPLICACIÓN DEL EJEMPLO 9
EJEMPLO 10: (Cuando parece que no se puede aplicar el caso, pero se puede)
4x3 - 4x2 + x - 1 =
4x2.(x - 1) + x - 1 =
4x2.(x - 1) + 1.(x - 1) =
(x - 1).(4x2 + 1)
Parece que no se pudiera aplicar el caso, porque entre la x y el 1 que quedaron no hay Factor Común. Sin embargo el caso se puede aplicar, sólo se trata de saber reconocer la situación. En el paso 2 es donde se vislumbra la posibilidad de usar el caso, por el resultado que dió la primera agrupación: (x - 1), que es igual a lo que quedó sin agrupar.
EXPLICACIÓN DEL EJEMPLO 10
TRINOMIO CUADRADO PERFECTO / EJERCICIOS RESUELTOS
EJEMPLO 1: (Términos positivos)
x2 + 6x + 9 = (x + 3)2
x 3
2.3.x
6x
Busco dos términos que sean "cuadrado" de algo. Son: x2 y 9. Entonces "bajo" la x y el 3 (las bases). Luego verifico 2.x.3 = 6x ("doble producto del primero por el segundo"). Dió igual que el otro término. El polinomio es un cuadrado "perfecto". El resultado de la factorización es la suma de las bases elevada al cuadrado: (x + 3)2
EXPLICACIÓN DEL EJEMPLO 1
EJEMPLO 2: (Con el "1")
x2 + 2x + 1 = (x + 1)2
x 1
2.1.x
...