Funcion Exponencial. Aplicaciones.
aldy1978dorrego28 de Noviembre de 2012
884 Palabras (4 Páginas)1.001 Visitas
Desde siempre, el ser humano ha tratado de conocer el universo y explicarse su origen y sus fenómenos. En la naturaleza existe una realidad que al ser estudiada y analizada matemáticamente puede contribuir al desarrollo de la lógica y la percepción humana sobre todos los fenómenos que algunas veces sin darnos cuenta ocurren.
Todos los temas que hacen parte del estudio de las matemáticas, son aplicables a la vida diaria y aunque a primera vista no parezca son esenciales y requeridos en la mayoría de cosas que han mejorado y facilitado el quehacer cotidiano.
En este caso las funciones exponenciales cumplen un papel importante en la vida de las personas; gracias a la existencia de las funciones exponenciales, es mas cómodo para los especialistas químicos, estudiar los elementos radiactivos; para los economistas, el crecimiento poblacional; para los médicos, la utilización de los medicamentos en el cuerpo humano; para los sicólogos en el estudio de coeficiente intelectual; para el economista y administradores el calculo de interés compuesto, entre otras aplicaciones.
Una función exponencial con base b es una función de la forma f(x) = bx , donde b y x son números reales tal que b > 0 y b es diferente de uno.
El dominio es el conjunto de todos los números reales y el recorrido es el conjunto de todos los números reales positivos.
1) f(x) = 2x
Propiedades de f(x) = bx, b>0, b diferente de uno:
1) Todas las gráficas intersecan en el punto (0,1).
2) Todas las gráficas son continuas, sin huecos o saltos.
3) El eje de x es la asíntota horizontal.
4) Si b > 1 (b, base), entonces bx aumenta conforme aumenta x.
5) Si 0 < b < 1, entonces bx disminuye conforme aumenta x.
6) La función f es una función uno a uno.
La función exponencial de base e
Al igual que p, e es un número irracional donde e = 2.71828... La notación e para este número fue dada por Leonhard Euler (1727).
Definición: Para un número real x, la ecuación f(x) = ex define a la función exponencial de base e.
Las calculadoras científicas y gráficas contienen una tecla para la función f(x) = ex.
La gráfica de f(x) = ex es:
El dominio es el conjunto de los números reales y el rango es el conjunto de los números reales positivos.
La función f(x) = ex es una función exponencial natural. Como 2<e<3, la gráfica de
f(x) = ex está entre f(x) = 2x y f(x) = 3x, como se ilustra a continuación:
Aplicaciones
La función exponencial sirve para describir cualquier proceso que evolucione de modo que el aumento (o disminución) en un pequeño intervalo de tiempo sea proporcional a lo que había al comienzo del mismo.
A continuación se ven tres aplicaciones:
• Crecimiento de poblaciones.
• Interés del dinero acumulado.
• Desintegración radioactiva.
-Interés compuesto
En el interés compuesto los intereses producidos por un capital, C0 se van acumulando a éste, de tiempo en tiempo, para producir nuevos intereses. Los intervalos de tiempo, al cabo de los cuales los intereses se acumulan al capital, se llaman periodos decapitalización o de acumulación. Si son t años, r es el rédito anual (interés anual en %) el capital final obtenido viene dado por la fórmula:
Cf=Co.(1+r/n.100)^t
...