Geometría
117715 de Abril de 2013
570 Palabras (3 Páginas)300 Visitas
La Geometría
Es una de las más antiguas ciencias. Inicialmente, constituía un cuerpo de conocimientos prácticos en relación con las longitudes, en el siglo III a. C. configuró la geometría en forma axiomática, tratamiento que estableció una norma a seguir durante muchos siglos: la geometría euclidiana descrita en «Los Elementos».
El estudio de la astronomía y la cartografía, tratando de determinar las posiciones de estrellas y planetas en la esfera celeste, sirvió como importante fuente de resolución de problemas geométricos durante más de un milenio. René Descartes desarrolló simultáneamente el álgebra y la geometría, marcando una nueva etapa, donde las figuras geométricas, tales como las curvas planas, podrían ser representadas analíticamente, es decir, con funciones y ecuaciones. La geometría se enriquece con el estudio de la estructura intrínseca de los entes geométricos que analizan Euler y Gauss, que condujo a la creación de la topología y la geometría diferencial.
Origen y evolución de la geometría
La historia del origen de la Geometría es muy similar a la de la Aritmética, siendo sus conceptos más antiguos consecuencia de las actividades prácticas. Los primeros hombres llegaron a formas geométricas a partir de la observación de la naturaleza.
El sabio griego Eudemo de Rodas, atribuyó a los egipcios el descubrimiento de la geometría, ya que, según él, necesitaban medir constantemente sus tierras debido a que las inundaciones del Nilo borraban continuamente sus fronteras. Recordemos que, precisamente, la palabra geometría significa medida de tierras.
Los egipcios se centraron principalmente en el cálculo de áreas y volúmenes, encontrando, por ejemplo, para el área del círculo un valor aproximado de (de 3'1605. Sin embargo el desarrollo geométrico adolece de falta de teoremas y demostraciones formales. También encontramos rudimentos de trigonometría y nociones básicas de semejanza de triángulos.
Euclides y Los elementos
Fragmento de uno de los Papiros de Oxirrinco con unas líneas de Los elementos de Euclides.
Euclides, vinculado al Museo de Alejandría y a su Biblioteca, zanja la cuestión al proponer un sistema de estudio en el que se da por sentado la veracidad de ciertas proposiciones por ser intuitivamente claras, y deducir de ellas todos los demás resultados. Su sistema se sintetiza en su obra cumbre, Los elementos, modelo de sistema axiomático-deductivo. Sobre tan sólo cinco postulados y las definiciones que precisa construye toda la Geometría y la Aritmética conocidas hasta el momento. Su obra, en trece volúmenes, perdurará como única verdad geométrica hasta entrado el siglo XIX.
Entre los postulados en los que Euclides se apoya hay uno (el quinto postulado) que trae problemas desde el principio. No se ponía en duda su veracidad, pero tal y como aparece expresado en la obra, muchos consideran que seguramente podía deducirse del resto de postulados. Durante los siguientes siglos, uno de los principales problemas de la Geometría será determinar si el V postulado es o no independiente de los otros cuatro, es decir, si es necesario considerarlo como un postulado o es un teorema, es decir, puede deducirse de los otros, y por lo tanto colocarse entre el resto de resultados de la obra.
Después de Euclides
Euclides casi cierra definitivamente la geometría griega –y por extensión la del mundo antiguo–, a excepción de las figuras de Arquímedes y Apolonio de Perge.
Arquímedes analizó exhaustivamente las secciones cónicas, e introdujo en geometría otras curvas como la espiral que lleva su nombre, aparte de su famoso cálculo del volumen de la esfera, basado en los del cilindro y el cono.
...